ﻻ يوجد ملخص باللغة العربية
The generalized Fibonacci sequences are sequences ${f_n}$ which satisfy the recurrence $f_n(s, t) = sf_{n - 1}(s, t) + tf_{n - 2}(s, t)$ ($s, t in mathbb{Z}$) with initial conditions $f_0(s, t) = 0$ and $f_1(s, t) = 1$. In a recent paper, Amdeberhan, Chen, Moll, and Sagan considered some arithmetic properites of the generalized Fibonacci sequence. Specifically, they considered the behavior of analogues of the $p$-adic valuation and the Riemann zeta function. In this paper, we resolve some conjectures which they raised relating to these topics. We also consider the rank modulo $n$ in more depth and find an interpretation of the rank in terms of the order of an element in the multiplicative group of a finite field when $n$ is an odd prime. Finally, we study the distribution of the rank over different values of $s$ when $t = -1$ and suggest directions for further study involving the rank modulo prime powers of generalized Fibonacci sequences.
We study the generalized random Fibonacci sequences defined by their first nonnegative terms and for $nge 1$, $F_{n+2} = lambda F_{n+1} pm F_{n}$ (linear case) and $widetilde F_{n+2} = |lambda widetilde F_{n+1} pm widetilde F_{n}|$ (non-linear case),
We study higher-dimensional interlacing Fibonacci sequences, generated via both Chebyshev type functions and $m$-dimensional recurrence relations. For each integer $m$, there exist both rational and integ
In this paper we study two functions $F(x)$ and $J(x)$, originally found by Herglotz in 1923 and later rediscovered and used by one of the authors in connection with the Kronecker limit formula for real quadratic fields. We discuss many interesting p
The Fibonacci sequence is a sequence of numbers that has been studied for hundreds of years. In this paper, we introduce the new sequence S_{k,n} with initial conditions S_{k,0} = 2b and S_{k,1} = bk + a, which is generated by the recurrence relation
Carmichael showed for sufficiently large $L$, that $F_L$ has at least one prime divisor that is $pm 1({rm mod}, L)$. For a given $F_L$, we will show that a product of distinct odd prime divisors with that congruence condition is a Fibonacci pseudopri