ﻻ يوجد ملخص باللغة العربية
We consider a left permutive cellular automaton Phi, with no memory and positive anticipation, defined on the space of all doubly infinite sequences with entries from a finite alphabet. For each such automaton that is not one-to-one, there is a dense set of points X (which is large in another sense too) such that the Phi-orbit closure of each x in X is topologically conjugate to an odometer (the ``+1 map on a projective limit of finite cyclic groups). We identify this odometer in several cases.
We say that a finite asynchronous cellular automaton (or more generally, any sequential dynamical system) is pi-independent if its set of periodic points are independent of the order that the local functions are applied. In this case, the local funct
We investigate the mean dimension of a cellular automaton (CA for short) with a compact non-discrete space of states. A formula for the mean dimension is established for (near) strongly permutative, permutative algebraic and unit one-dimensional au
We describe the infinite interval exchange transformations obtained as a composition of a finite interval exchange transformation and the von Neumann-Kakutani map, called the rotated odometers. We show that with respect to Lebesgue measure on the uni
Weighted shifts are an important concrete class of operators in linear dynamics. In particular, they are an essential tool in distinguishing variety dynamical properties. Recently, a systematic study of dynamical properties of composition operators o
A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represent