ﻻ يوجد ملخص باللغة العربية
Weighted shifts are an important concrete class of operators in linear dynamics. In particular, they are an essential tool in distinguishing variety dynamical properties. Recently, a systematic study of dynamical properties of composition operators on $L^p$ spaces has been initiated. This class of operators includes weighted shifts and also allows flexibility in construction of other concrete examples. In this article, we study one such concrete class of operators, namely composition operators induced by measures on odometers. In particular, we study measures on odometers which induce mixing and transitive linear operators on $L^p$ spaces.
We describe the infinite interval exchange transformations obtained as a composition of a finite interval exchange transformation and the von Neumann-Kakutani map, called the rotated odometers. We show that with respect to Lebesgue measure on the uni
We consider a left permutive cellular automaton Phi, with no memory and positive anticipation, defined on the space of all doubly infinite sequences with entries from a finite alphabet. For each such automaton that is not one-to-one, there is a dense
In this paper we give explicit characterizations, based on the cutting and spacer parameters, of (a) which rank-one transformations factor onto a given finite cyclic permutation, (b) which rank-one transformations factor onto a given odometer, and (c
A rotated odometer is an infinite interval exchange transformation (IET) obtained as a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In this paper, we consider rotated odometers for which the finite IET is
In the early 1970s Eisenberg and Hedlund investigated relationships between expansivity and spectrum of operators on Banach spaces. In this paper we establish relationships between notions of expansivity and hypercyclicity, supercyclicity, Li-Yorke c