ﻻ يوجد ملخص باللغة العربية
The {em focal curve} of an immersed smooth curve $gamma:smapsto gamma(s)$, in Euclidean space $R^{m+1}$, consists of the centres of its osculating hyperspheres. The focal curve may be parametrised in terms of the Frenet frame of $gamma$ (${bf t},{bf n}_1, ...,{bf n}_m$), as $C_gamma(s)=(gamma+c_1{bf n}_1+c_2{bf n}_2+...+c_m{bf n}_m)(s)$, where the coefficients $c_1,...,c_{m-1}$ are smooth functions that we call the {em focal curvatures} of $gamma$. We discovered a remarkable formula relating the Euclidean curvatures $kappa_i$, $i=1,...,m$, of $gamma$ with its focal curvatures. We show that the focal curvatures satisfy a system of Frenet equations (not vectorial, but scalar!). We use the properties of the focal curvatures in order to give, for $k=1,...,m$, necessary and sufficient conditions for the radius of the osculating $k$-dimensional sphere to be critical. We also give necessary and sufficient conditions for a point of $gamma$ to be a vertex. Finally, we show explicitly the relations of the Frenet frame and the Euclidean curvatures of $gamma$ with the Frenet frame and the Euclidean curvatures of its focal curve $C_gamma$.
This paper focuses on the study of open curves in a manifold M, and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparam
We study reparametrization invariant Sobolev metrics on spaces of regular curves. We discuss their completeness properties and the resulting usability for applications in shape analysis. In particular, we will argue, that the development of efficient
This paper is devoted to the complete classification of space curves under affine transformations in the view of Cartans theorem. Spivak has introduced the method but has not found the invariants. Furthermore, for the first time, we propound a necess
We characterize singularities of focal surfaces of wave fronts in terms of differential geometric properties of the initial wave fronts. Moreover, we study relationships between geometric properties of focal surfaces and geometric invariants of the initial wave fronts.
We give criteria for which a principal curvature becomes a bounded $C^infty$-function at non-degenerate singular points of wave fronts by using geometric invariants. As applications, we study singularities of parallel surfaces and extended distance s