ترغب بنشر مسار تعليمي؟ اضغط هنا

Principal curvatures and parallel surfaces of wave fronts

92   0   0.0 ( 0 )
 نشر من قبل Keisuke Teramoto
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Keisuke Teramoto




اسأل ChatGPT حول البحث

We give criteria for which a principal curvature becomes a bounded $C^infty$-function at non-degenerate singular points of wave fronts by using geometric invariants. As applications, we study singularities of parallel surfaces and extended distance squared functions of wave fronts. Moreover, we relate these singularities to some geometric invariants of fronts.



قيم البحث

اقرأ أيضاً

95 - Keisuke Teramoto 2018
We characterize singularities of focal surfaces of wave fronts in terms of differential geometric properties of the initial wave fronts. Moreover, we study relationships between geometric properties of focal surfaces and geometric invariants of the initial wave fronts.
123 - Konrad Waldorf 2017
A nice differential-geometric framework for (non-abelian) higher gauge theory is provided by principal 2-bundles, i.e. categorified principal bundles. Their total spaces are Lie groupoids, local trivializations are kinds of Morita equivalences, and c onnections are Lie-2-algebra-valued 1-forms. In this article, we construct explicitly the parallel transport of a connection on a principal 2-bundle. Parallel transport along a path is a Morita equivalence between the fibres over the end points, and parallel transport along a surface is an intertwiner between Morita equivalences. We prove that our constructions fit into the general axiomatic framework for categorified parallel transport and surface holonomy.
We introduce and study (strict) Schottky G-bundles over a compact Riemann surface X, where G is a connected reductive algebraic group. Strict Schottky representations are shown to be related to branes in the moduli space of G-Higgs bundles over X, an d we prove that all Schottky $G$-bundles have trivial topological type. Generalizing the Schottky moduli map introduced in Florentino to the setting of principal bundles, we prove its local surjectivity at the good and unitary locus. Finally, we prove that the Schottky map is surjective onto the space of flat bundles for two special classes: when G is an abelian group over an arbitrary X, and the case of a general G-bundle over an elliptic curve.
In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending the results of Barrett, Caetano and Picken, and Schreiber and Waldof from manifolds to stacks. In the process of proving our main result we simplify Schreiber and Waldorfs definition of a transport functor for principal bundles with connections over manifolds and provide a more direct proof of the correspondence between principal bundles with connections and transport functors.
46 - Keisuke Teramoto 2018
We study singularities of Gauss maps of fronts and give characterizations of types of singularities of Gauss maps by geometric properties of fronts which are related to behavior of bounded principal curvatures. Moreover, we investigate relation betwe en a kind of boundedness of Gaussian curvatures near cuspidal edges and types of singularities of Gauss maps of cuspidal edges. Further, we consider extended height functions on fronts with non-degenerate singular points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا