ترغب بنشر مسار تعليمي؟ اضغط هنا

One-loop effective potential of N=1 supersymmetric theory and decoupling effects

115   0   0.0 ( 0 )
 نشر من قبل I. L. Buchbinder
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the decoupling effects in N=1 (global) supersymmetric theories with chiral superfields at the one-loop level. The examples of gauge neutral chiral superfields with the minimal (renormalizable) as well as non-minimal (non- renormalizable) couplings are considered, and decoupling in gauge theories with U(1) gauge superfields that couple to heavy chiral matter is studied. We calculate the one-loop corrected effective Lagrangians that involve light fields and heavy fields with mass of order M. The elimination of heavy fields by equations of motion leads to decoupling effects with terms that grow logarithmically with M. These corrections renormalize light fields and couplings in the theory (in accordance with the decoupling theorem). When the field theory is an effective theory of the underlying fundamental theory, like superstring theory, where the couplings are calculable, such decoupling effects modify the low-energy predictions for the effective couplings of light fields. In particular, for the class of string vacua with an anomalous U(1) the vacuum restabilization triggers the decoupling effects, which can significantly modify the low energy predictions for the couplings of the surviving light fields. We also demonstrate that quantum corrections to the chiral potential depending on massive background superfields and corresponding to supergraphs with internal massless lines and external massive lines can also arise at the two-loop level.



قيم البحث

اقرأ أيضاً

We consider the scalar sector of a general renormalizable theory and evaluate the effective potential through three loops analytically. We encounter three-loop vacuum bubble diagrams with up to two masses and six lines, which we solve using different ial equations transformed into the favorable $epsilon$ form of dimensional regularization. The master integrals of the canonical basis thus obtained are expressed in terms of cyclotomic polylogarithms up to weight four. We also introduce an algorithm for the numerical evaluation of cyclotomic polylogarithms with multiple-precision arithmetic, which is implemented in the Mathematica package cyclogpl.m supplied here.
Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a higgs-like scalar $phi$ in theories in which scal e symmetry is broken only spontaneously by the dilaton ($sigma$). Its vev $langlesigmarangle$ generates the DR subtraction scale ($musimlanglesigmarangle$), which avoids the explicit scale symmetry breaking by traditional regularizations (where $mu$=fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking ($mu$=fixed scale). These operators have the form: $phi^6/sigma^2$, $phi^8/sigma^4$, etc, which generate an infinite series of higher dimensional polynomial operators upon expansion about $langlesigmaranglegg langlephirangle$, where such hierarchy is arranged by {it one} initial, classical tuning. These operators emerge at the quantum level from evanescent interactions ($proptoepsilon$) between $sigma$ and $phi$ that vanish in $d=4$ but are demanded by classical scale invariance in $d=4-2epsilon$. The Callan-Symanzik equation of the two-loop potential is respected and the two-loop beta functions of the couplings differ from those of the same theory regularized with $mu=$fixed scale. Therefore the running of the couplings enables one to distinguish between spontaneous and explicit scale symmetry breaking.
We investigate supersymmetry breaking meta-stable vacua in N=2, SU(2)times U(1) gauge theory with N_f=2 massless flavors perturbed by the addition of small N=1 preserving mass terms in a presence of a Fayet-Iliopoulos term. We derive the low energy e ffective theory by using the exact results of N=2 supersymmetric QCD and examine the effective potential. At the classical level, the theory has supersymmetric vacua on Coulomb and Higgs branches. We find that supersymmetry on the Coulomb branch is dynamically broken as a consequence of the strong dynamics of SU(2) gauge symmetry while the supersymmetric vacuum on the Higgs branch remains. We also estimate the lifetimes of the local minima on the Coulomb branch. We find that they are sufficiently long and therefore the local vacua we find are meta-stable.
76 - M. Costa , , H. Panagopoulos 2016
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (${cal N}=1$). We compute, perturbatively to one-loop, the relevant two-point Greens functions using both the dimensional and the lattice regul arizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is $SU(N_c)$ while the number of colors, $N_c$ and the number of flavors, $N_f$, are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field ($Z_psi$), gluon field ($Z_u$), gluino field ($Z_lambda$) and squark field ($Z_{A_pm}$). We present here results from dimensional regularization, relegating to a forthcoming publication our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the non-supersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.
A new formalism for lattice gauge theory is developed that preserves Poincare symmetry in a discrete universe. We define the $mathbb{1}$-loop, a generalization of the Wilson loop that reformulates classical differential equations of motion as identit y-valued multiplicative loops of Lie group elements of the form ${[g_1cdots g_n]=mathbb{1}}$. A lattice Poincare gauge theory of gravity is thus derived that employs a novel matter field construction and recovers Einsteins vacuum equations in the appropriate limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا