ﻻ يوجد ملخص باللغة العربية
We consider the scalar sector of a general renormalizable theory and evaluate the effective potential through three loops analytically. We encounter three-loop vacuum bubble diagrams with up to two masses and six lines, which we solve using differential equations transformed into the favorable $epsilon$ form of dimensional regularization. The master integrals of the canonical basis thus obtained are expressed in terms of cyclotomic polylogarithms up to weight four. We also introduce an algorithm for the numerical evaluation of cyclotomic polylogarithms with multiple-precision arithmetic, which is implemented in the Mathematica package cyclogpl.m supplied here.
For arbitrary scalar QFTs in four dimensions, renormalisation group equations of quartic and cubic interactions, mass terms, as well as field anomalous dimensions are computed at three-loop order in the $overline{text{MS}}$ scheme. Utilising pre-exis
Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a higgs-like scalar $phi$ in theories in which scal
For arbitrary four-dimensional quantum field theories with scalars and fermions, renormalisation group equations in the $overline{text{MS}}$ scheme are investigated at three-loop order in perturbation theory. Collecting literature results, general ex
We study the decoupling effects in N=1 (global) supersymmetric theories with chiral superfields at the one-loop level. The examples of gauge neutral chiral superfields with the minimal (renormalizable) as well as non-minimal (non- renormalizable) cou
We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite se