ﻻ يوجد ملخص باللغة العربية
A new formalism for lattice gauge theory is developed that preserves Poincare symmetry in a discrete universe. We define the $mathbb{1}$-loop, a generalization of the Wilson loop that reformulates classical differential equations of motion as identity-valued multiplicative loops of Lie group elements of the form ${[g_1cdots g_n]=mathbb{1}}$. A lattice Poincare gauge theory of gravity is thus derived that employs a novel matter field construction and recovers Einsteins vacuum equations in the appropriate limit.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b
We study confining strings in ${cal{N}}=1$ supersymmetric $SU(N_c)$ Yang-Mills theory in the semiclassical regime on $mathbb{R}^{1,2} times mathbb{S}^1$. Static quarks are expected to be confined by double strings composed of two domain walls - which
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS
We investigate the lattice ${mathbb C} P^{N-1}$ sigma model on $S_{s}^{1}$(large) $times$ $S_{tau}^{1}$(small) with the ${mathbb Z}_{N}$ symmetric twisted boundary condition, where a sufficiently large ratio of the circumferences ($L_{s}gg L_{tau}$)
We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$bet