ﻻ يوجد ملخص باللغة العربية
We study the worldvolume dynamics of BPS domain walls in N=1 SQCD with N_f=N flavors, and exhibit an enhancement of supersymmetry for the reduced moduli space associated with broken flavor symmetries. We provide an explicit construction of the worldvolume superalgebra which corresponds to an N=2 Kahler sigma model in 2+1D deformed by a potential, given by the norm squared of a U(1) Killing vector, resulting from the flavor symmetries broken by unequal quark masses. This framework leads to a worldvolume description of novel two-wall junction configurations, which are 1/4-BPS objects, but nonetheless preserve two supercharges when viewed as kinks on the wall worldvolume.
We consider supersymmetric domain walls of four-dimensional $mathcal{N}!=!1$ $Sp(N)$ SQCD with $F!=!N+1$ and $F!=!N+2$ flavors. First, we study numerically the differential equations defining the walls, classifying the solutions. When $F!=!N+2$, in
We study supersymmetric domain walls of four dimensional $SU(N)$ SQCD with $N$ and $N+1$ flavors. In $4d$ we analyze the BPS differential equations numerically. In $3d$ we propose the $mathcal{N}=1$ Chern-Simons-Matter gauge theories living on the wa
Coincident D3-branes placed at a conical singularity are related to string theory on $AdS_5times X_5$, for a suitable five-dimensional Einstein manifold $X_5$. For the example of the conifold, which leads to $X_5=T^{1,1}=(SU(2)times SU(2))/U(1)$, the
We discuss the special holonomy metrics of Gibbons, Lu, Pope and Stelle, which were constructed as nilmanifold bundles over a line by uplifting supersymmetric domain wall solutions of supergravity to 11 dimensions. We show that these are dual to inte
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined