ﻻ يوجد ملخص باللغة العربية
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined via the Witten index of the induced worldvolume theory, which is invariant under the deformation to the Higgs phase. The worldvolume theory is a sigma model with a Grassmanian target space which arises as the coset associated with the global symmetries broken by the wall solution. Imposing a suitable infrared regulator, the result is found to agree with recent work of Acharya and Vafa in which the walls were realized as wrapped D4-branes in IIA string theory.
We study the domain walls in hot $4$-D $SU(N)$ super Yang-Mills theory and QCD(adj), with $n_f$ Weyl flavors. We find that the $k$-wall worldvolume theory is $2$-D QCD with gauge group $SU(N-k)times SU(k) times U(1)$ and Dirac fermions charged under
We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supers
We use fractional and wrapped branes to describe perturbative and non-perturbative properties of N=1 super Yang-Mills living on their world-volume. (Talk given at the 1st Nordstrom Symposium, Helsinki, August 2003.)
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these
We find a formulation of $mathcal{N}=2$ supersymmetric Yang-Mills theory in Projective superspace. In particular we find an expression for the field strength in terms of an unconstrained prepotential which is desirable when quantizing the theory. We