ترغب بنشر مسار تعليمي؟ اضغط هنا

Covariant Phase Space and Soft Factorization in Non-Abelian Gauge Theories

164   0   0.0 ( 0 )
 نشر من قبل Temple He
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.



قيم البحث

اقرأ أيضاً

129 - Xiao-Li Luo , Jian-Hua Gao 2021
We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian $SU(N)$ gauge field within the Wigner function formalism. By using the covariant gradient expansion, we disentangle the Wigner equations in four-vector space up to the first order and find that only the time-like component of the chiral Wigner function is independent while other components can be explicit derivative. After further decomposing the Wigner function or equations in color space, we present the non-Abelian covariant chiral kinetic equation for the color singlet and multiplet phase-space distribution functions. These phase-space distribution functions have non-trivial Lorentz transformation rules when we define them in different reference frames. The chiral anomaly from non-Abelian gauge field arises naturally from the Berry monopole in Euclidian momentum space in the vacuum or Dirac sea contribution. The anomalous currents as non-Abelian counterparts of chiral magnetic effect and chiral vortical effect have also been derived from the non-Abelian chiral kinetic equation.
76 - Andrea Quadri 2019
We study the solution to the Slavnov-Taylor (ST) identities in spontaneously broken effective gauge theories for a non-Abelian gauge group. The procedure to extract the $beta$-functions of the theory in the presence of (generalized) non-polynomial field redefinitions is elucidated.
We compute vacuum expectation values of products of fermion bilinears for two-dimensional Quantum Chromodynamics at finite flavored fermion densities. We introduce the chemical potential as an external charge distribution within the path-integral app roach and carefully analyse the contribution of different topological sectors to fermion correlators. We show the existence of chiral condensates exhibiting an oscillatory inhomogeneous behavior as a function of a chemical potential matrix. This result is exact and goes in the same direction as the behavior found in QCD_4 within the large N approximation.
A detailed description of the method for analytical evaluation of the three-loop contributions to renormalization group functions is presented. This method is employed to calculate the charge renormalization function and anomalous dimensions for non- Abelian gauge theories with fermions in the three-loop approximation. A three-loop expression for the effective charge of QCD is given. Charge renormalization effects in the SU(4)-supersymmetric gauge model is shown to vanish at this level. A complete list of required formulas is given in Appendix. The above-mentioned results of three-loop calculations have been published by the present authors (with A.Yu., Zharkov and L.V., Avdeev) in 1980 in Physics Letters B. The present text, which treats the subject in more details and contains a lot of calculational techniques, has also been published in 1980 as the JINR Communication E2-80-483.
We study the relationship between three non-Abelian topologically massive gauge theories, viz. the naive non-Abelian generalization of the Abelian model, Freedman-Townsend model and the dynamical 2-form theory, in the canonical framework. Hamiltonian formulation of the naive non-Abelian theory is presented first. The other two non-Abelian models are obtained by deforming the constraints of this model. We study the role of the auxiliary vector field in the dynamical 2-form theory in the canonical framework and show that the dynamical 2-form theory cannot be considered as the embedded version of naive non-Abelian model. The reducibility aspect and gauge algebra of the latter models are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا