ﻻ يوجد ملخص باللغة العربية
We analyze unoriented Wess-Zumino-Witten models from a geometrical point of view. We show that the geometric interpretation of simple current crosscap states is as centre orientifold planes localized on conjugacy classes of the group manifold. We determine the locations and dimensions of these planes for arbitrary simply-connected groups and orbifolds thereof. The dimensions of the O-planes turn out to be given by the dimensions of symmetric coset manifolds based on regular embeddings. Furthermore, we give a geometrical interpretation of boundary conjugation in open unoriented WZW models; it yields D-branes together with their images under the orientifold projection. To find the agreement between O-planes and crosscap states, we find explicit answers for lattice extensions of Gaussian sums. These results allow us to express the modular P-matrix, which is directly related to the crosscap coefficient, in terms of characters of the horizontal subgroup of the affine Lie algebra. A corollary of this relation is that there exists a formal linear relation between the modular P- and the modular S-matrix.
We analyse the problem of assigning sign choices to O-planes in orientifolds of type II string theory. We show that there exists a sequence of invariant $p$-gerbes with $pgeq-1$, which give rise to sign choices and are related by coboundary maps. We
We summarize recent progress in constructing orientifolds of Gepner models, a phenomenologically interesting class of exactly solvable string compactifications with viable gauge groups and chiral matter.
The aim of this paper is to study orientifolds of c=1 conformal field theories. A systematic analysis of the allowed orientifold projections for c=1 orbifold conformal field theories is given. We compare the Klein bottle amplitudes obtained at ration
We study the dynamics of type I strings on Melvin backgrounds, with a single or multiple twisted two-planes. We construct two inequivalent types of orientifold models that correspond to (non-compact) irration
The simple current construction of orientifolds based on rational conformal field theories is reviewed. When applied to SO(16) level 1, one can describe all ten-dimensional orientifolds in a unified framework.