ترغب بنشر مسار تعليمي؟ اضغط هنا

Sign choices for orientifolds

141   0   0.0 ( 0 )
 نشر من قبل Richard Szabo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the problem of assigning sign choices to O-planes in orientifolds of type II string theory. We show that there exists a sequence of invariant $p$-gerbes with $pgeq-1$, which give rise to sign choices and are related by coboundary maps. We prove that the sign choice homomorphisms stabilise with the dimension of the orientifold and we derive topological constraints on the possible sign configurations. Concrete calculations for spherical and toroidal orientifolds are carried out, and in particular we exhibit a four-dimensional orientifold where not every sign choice is geometrically attainable. We elucidate how the $K$-theory groups associated with invariant $p$-gerbes for $p=-1,0,1$ interact with the coboundary maps. This allows us to interpret a notion of $K$-theory due to Gao and Hori as a special case of twisted $KR$-theory, which consequently implies the homotopy invariance and Fredholm module description of their construction.



قيم البحث

اقرأ أيضاً

The metric-affine and generalized geometries, respectively, are arguably the appropriate mathematical frameworks for Einsteins theory of gravity and the low-energy effective massless oriented closed bosonic string field theory. In fact, mathematical structures in a metric-affine geometry are written on the tangent bundle, which is itself a Lie algebroid; whereas those in generalized geometries introduced as the basis of double field theories, are written on Courant algebroids. The Lie, Courant and the higher Courant algebroids used in exceptional field theories, are all special cases of pre-Leibniz algebroids. Provided with some additional ingredients, the construction of such geometries can all be carried over to regular pre-Leibniz algebroids. We define below the notions of locality structures and locality projectors, which are some such necessary ingredients. In terms of these structures, $E$-metric-connection geometries are constructed with (possibly) a minimum number of assumptions. Certain small gaps in the literature are also filled as we go along. $E$-Koszul connections, as a generalization of Levi-Civita connections, are going to be defined and shown to be helpful for some results including a simple generalization of the fundamental theorem of Riemannian geometry. We also show that metric-affine geometries can be constructed in a unique way as special cases of $E$-metric-connection geometries. Moreover, generalized geometries are shown to follow as special cases, and various properties of linear generalized-connections are proven in the present framework. Similarly, uniqueness of the locality projector in the case of exact Courant algebroids is proven; a result that explains why the curvature operator, defined with a projector in the double field theory literature is a necessity.
We summarize recent progress in constructing orientifolds of Gepner models, a phenomenologically interesting class of exactly solvable string compactifications with viable gauge groups and chiral matter.
82 - L.R. Huiszoon , K. Schalm , 2001
We analyze unoriented Wess-Zumino-Witten models from a geometrical point of view. We show that the geometric interpretation of simple current crosscap states is as centre orientifold planes localized on conjugacy classes of the group manifold. We det ermine the locations and dimensions of these planes for arbitrary simply-connected groups and orbifolds thereof. The dimensions of the O-planes turn out to be given by the dimensions of symmetric coset manifolds based on regular embeddings. Furthermore, we give a geometrical interpretation of boundary conjugation in open unoriented WZW models; it yields D-branes together with their images under the orientifold projection. To find the agreement between O-planes and crosscap states, we find explicit answers for lattice extensions of Gaussian sums. These results allow us to express the modular P-matrix, which is directly related to the crosscap coefficient, in terms of characters of the horizontal subgroup of the affine Lie algebra. A corollary of this relation is that there exists a formal linear relation between the modular P- and the modular S-matrix.
We compute the prepotential for gauge theories descending from ${cal N}=4$ SYM via quiver projections and mass deformations. This accounts for gauge theories with product gauge groups and bifundamental matter. The case of massive orientifold gauge theories with gauge group SO/Sp is also described. In the case with no gravitational corrections the results are shown to be in agreement with Seiberg-Witten analysis and previous results in the literature.
The seven and nine dimensional geometries associated with certain classes of supersymmetric $AdS_3$ and $AdS_2$ solutions of type IIB and D=11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate thei r properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in $2n+2$ dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for $nge 3$, we show that when the geometry in $2n+2$ dimensions is a cone we obtain a class of geometries in $2n+1$ dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when $n=3,4$, respectively. We also consider various ansatz for the geometries and construct infinite classes of explicit examples for all $n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا