ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to study orientifolds of c=1 conformal field theories. A systematic analysis of the allowed orientifold projections for c=1 orbifold conformal field theories is given. We compare the Klein bottle amplitudes obtained at rational points with the orientifold projections that we claim to be consistent for any value of the orbifold radius. We show that the recently obtained Klein bottle amplitudes corresponding to exceptional modular invariants, describing bosonic string theories at fractional square radius, are also in agreement with those orientifold projections.
We discuss the resolution of toroidal orbifolds. For the resulting smooth Calabi-Yau manifolds, we calculate the intersection ring and determine the divisor topologies. In a next step, the orientifold quotients are constructed.
A classification of D-branes in Type IIB Op^- orientifolds and orbifolds in terms of Real and equivariant KK-groups is given. We classify D-branes intersecting orientifold planes from which are recovered some special limits as the spectrum for D-bran
The simple current construction of orientifolds based on rational conformal field theories is reviewed. When applied to SO(16) level 1, one can describe all ten-dimensional orientifolds in a unified framework.
We compute the prepotential for gauge theories descending from ${cal N}=4$ SYM via quiver projections and mass deformations. This accounts for gauge theories with product gauge groups and bifundamental matter. The case of massive orientifold gauge
We analyze unoriented Wess-Zumino-Witten models from a geometrical point of view. We show that the geometric interpretation of simple current crosscap states is as centre orientifold planes localized on conjugacy classes of the group manifold. We det