ﻻ يوجد ملخص باللغة العربية
We study the world-volume theory of a bosonic membrane perturbatively and discuss if one can obtain any conditions on the number of space-time dimensions from the consistency of the theory. We construct an action which is suitable for such a study. In order to study the theory perturbatively we should specify a classical background around which perturbative expansion is defined. We will discuss the conditions which such a background should satisfy to deduce the critical dimension. Unfortunately we do not know any background satisfying such conditions. In order to get indirect evidences for the critical dimension of the membrane, we next consider two string models obtained via double dimensional reduction of the membrane. The first one reduces to the Polyakov string theory in the conformal gauge. The second one is described by the Schild action. We show that the critical dimension is 26 for these string theories, which implies that the critical dimension is 27 for the membrane theory.
Recently Sekino and Yoneya proposed a way to regularize the world volume theory of membranes wrapped around $S^1$ by matrices and showed that one obtains matrix string theory as a regularization of such a theory. We show that this correspondence betw
Two-dimensional fermionic string theory is shown to have a structure of topological model, which is isomorphic to a tensor product of two topological ghost systems independent of each other. One of them is identified with $c=1$ bosonic string theory
Starting from the amplitude with an arbitrary number of massless closed states of the bosonic string, we compute the soft limit when one of the states becomes soft to subsubleading order in the soft momentum expansion, and we show that when the soft
In this note, we construct a BRST invariant cubic vertex for massless fields of arbitrary mixed symmetry in flat space-time. The construction is based on the vertex given in bosonic Open String Field Theory. The algebra of gauge transformations is cl
We construct, in the closed bosonic string, the multiloop amplitude involving $N$ tachyons and one massless particle with $26 -D$ compactified directions, and we show that at least for $D>4$, the soft behaviors of the graviton and dilaton satisfy the