ﻻ يوجد ملخص باللغة العربية
Two-dimensional fermionic string theory is shown to have a structure of topological model, which is isomorphic to a tensor product of two topological ghost systems independent of each other. One of them is identified with $c=1$ bosonic string theory while the other has trivial physical contents. This fact enables us to regard two-dimensional fermionic string theory as an embedding of $c=1$ bosonic string theory in the moduli space of fermionic string theories. Upon this embedding, the discrete states of $c=1$ string theory are mapped to those of fermionic string theory, which is considered to be the origin of the similarity between the physical spectra of these two theories. We also discuss a novel BRST operator associated with this topological structure.
We study the multiloop amplitudes of the light-cone gauge closed bosonic string field theory for $d eq 26$. We show that the amplitudes can be recast into a BRST invariant form by adding a nonstandard worldsheet theory for the longitudinal variables
In this note we show that by fixing the multiloop Green function in the closed bosonic string to be Arakelovs Green function, one obtains factorization of scattering amplitudes with a softly emitted dilaton to the same level as with a graviton to all
A family of exact conformal field theories is constructed which describe charged black strings in three dimensions. Unlike previous charged black hole or extended black hole solutions in string theory, the low energy spacetime metric has a regular in
Starting from the amplitude with an arbitrary number of massless closed states of the bosonic string, we compute the soft limit when one of the states becomes soft to subsubleading order in the soft momentum expansion, and we show that when the soft
We investigate combined effects of nontrivial topology, induced by a cosmic string, and boundaries on the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive fermionic field. As geometry of boundari