ﻻ يوجد ملخص باللغة العربية
Recently Sekino and Yoneya proposed a way to regularize the world volume theory of membranes wrapped around $S^1$ by matrices and showed that one obtains matrix string theory as a regularization of such a theory. We show that this correspondence between matrix string theory and wrapped membranes can be obtained by using the usual M(atrix) theory techniques. Using this correspondence, we construct the super-Poincare generators of matrix string theory at the leading order in the perturbation theory. It is shown that these generators satisfy 10 dimensional super-Poincare algebra without any anomaly.
We study the world-volume theory of a bosonic membrane perturbatively and discuss if one can obtain any conditions on the number of space-time dimensions from the consistency of the theory. We construct an action which is suitable for such a study. I
We analyse two issues that arise in the context of (matrix) string theories in plane wave backgrounds, namely (1) the use of Brinkmann- versus Rosen-variables in the quantum theory for general plane waves (which we settle conclusively in favour of Br
The $SU(N)$--invariant matrix model potential is written as a sum of squares with only four frequencies (whose multiplicities and simple $N$--dependence are calculated).
The infrared behavior of perturbative quantum gravity is studied using the method developed for QED by Faddeev and Kulish. The operator describing the asymptotic dynamics is derived and used to construct an IR-finite S matrix and space of asymptotic
In arXiv:1911.08172 we have studied the single-particle free energy of a class of Little String Theories of A-type, which are engineered by $N$ parallel M5-branes on a circle. To leading instanton order (from the perspective of the low energy $U(N)$