ترغب بنشر مسار تعليمي؟ اضغط هنا

From QFT to DCC

339   0   0.0 ( 0 )
 نشر من قبل Bindu Anubha Bambah
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum field theoretical model for the dynamics of the disoriented chiral condensate is presented. A unified approach to relate the quantum field theory directly to the formation, decay and signals of the DCC and its evolution is taken. We use a background field analysis of the O(4) sigma model keeping one-loop quantum corrections (quadratic order in the fluctuations). An evolution of the quantum fluctuations in an external, expanding metric which simulates the expansion of the plasma, is carried out. We examine, in detail, the amplification of the low momentum pion modes with two competing effects, the expansion rate of the plasma and the transition rate of the vacuum configuration from a metastable state into a stable state.We show the effect of DCC formation on the multiplicity distributions and the Bose-Einstein correlations.



قيم البحث

اقرأ أيضاً

We show that large n-particle production rates derived in the semiclassical Higgsplosion limit of scalar field theoretical models with spontaneous symmetry breaking, are consistent with general principles of localizable quantum field theory. The stri ct localizability criterium of Jaffe defines quantum fields as operator-valued distributions acting on test functions that are localized in finite regions of space-time. The requirement of finite support of test functions in space-time ensures the causality property of QFT. The corresponding localizable fields need not be tempered distributions, and they fit well into the framework of local quantum field theory.
190 - Urs Schreiber 2008
There are essentially two different approaches to the axiomatization of quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and functorial QFT, going back to Atiyah and Segal. More recently, based on ideas by Baez and Dolan, th e latter is being refined to extended functorial QFT by Freed, Hopkins, Lurie and others. The first approach uses local nets of operator algebras which assign to each patch an algebra of observables, the latter uses n-functors which assign to each patch a propagator of states. In this note we present an observation about how these two axiom systems are naturally related: we demonstrate under mild assumptions that every 2-dimensional extended Minkowskian QFT 2-functor (parallel surface transport) naturally yields a local net. This is obtained by postcomposing the propagation 2-functor with an operation that mimics the passage from the Schroedinger picture to the Heisenberg picture in quantum mechanics. The argument has a straightforward generalization to general pseudo-Riemannian structure and higher dimensions.
We find that the recently developed kinetic theories with spin for massive and massless fermions are smoothly connected. By introducing a reference-frame vector, we decompose the dipole-moment tensor into electric and magnetic dipole moments. We show that the axial-vector component of the Wigner function contains a contribution from the transverse magnetic dipole moment which accounts for the transverse spin degree of freedom (DOF) and vanishes smoothly in the massless limit. As a result, the kinetic equations, describing four DOF for massive fermions, becomes smoothly the chiral kinetic equations describing two DOF in the massless limit. We also confirm the small-mass behavior of the Wigner function by explicit calculation using a Gaussian wave packet.
We investigate how to include bound states in a thermal gas in the context of quantum field theory (QFT). To this end, we use for definiteness a scalar QFT with a $varphi^{4}$ interaction, where the field $varphi$ represents a particle with mass $m$. A bound state of the $varphi$-$varphi$ type is created when the coupling constant is negative and its modulus is larger than a certain critical value. We investigate the contribution of this bound state to the pressure of the thermal gas of the system by using the $S$-matrix formalism involving the derivative of the phase-shift scattering. Our analysis, which is based on an unitarized one-loop resumed approach which renders the theory finite and well-defined for each value of the coupling constant, leads to following main results: (i) We generalize the phase-shift formula in order to take into account within a unique formal approach the two-particle interaction as well as the bound state (if existent). (ii) textit{On the one hand}, the number density of the bound state in the system at a certain temperature $T$ is obtained by the standard thermal integral; this is the case for any binding energy, even if it is much smaller than the temperature of the thermal gas. (iii) textit{On the other hand}, the contribution of the bound state to the total pressure is partly -- but not completely -- canceled by the two-particle interaction contribution to the pressure. (iv) The pressure as function of the coupling constant is textit{continuous} also at the critical coupling for the bound state formation: the jump in pressure due to the sudden appearance of the bound state is exactly canceled by an analogous jump (but with opposite sign) of the interaction contribution to the pressure.
The first order hydrodynamic evolution equations for the shear stress tensor, the bulk viscous pressure and the charge current have been studied for a system of quarks and gluons, with a non-vanishing quark chemical potential and finite quark mass. T he first order transport coefficients have been obtained by solving an effective Boltzmann equation for the grand-canonical ensemble of quasiquarks and quasigluons. We adopted temperature dependent effective fugacity for the quasiparticles to encode the hot QCD medium effects. The non-trivial energy dispersion of the quasiparticles induces mean field contributions to the transport coefficients whose origin could be directly related to the realization of conservation laws from the effective kinetic theory. Both the QCD equation of state and chemical potential are seen to have a significant impact on the quark-gluon plasma evolution. The shear and bulk viscous corrections to the entropy-four current have been investigated in the framework of the effective kinetic theory. The effect of viscous corrections to the entropy density have been quantified in the case of one dimensional boost-invariant expansion of the system. Further, the first order viscous corrections to the time evolution of temperature along with the description of pressure anisotropy and Reynolds number of the system have been explored for the longitudinal boost-invariant expansion.volution of temperature along with the description of pressure anisotropy of the system have also been explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا