ﻻ يوجد ملخص باللغة العربية
We investigate how to include bound states in a thermal gas in the context of quantum field theory (QFT). To this end, we use for definiteness a scalar QFT with a $varphi^{4}$ interaction, where the field $varphi$ represents a particle with mass $m$. A bound state of the $varphi$-$varphi$ type is created when the coupling constant is negative and its modulus is larger than a certain critical value. We investigate the contribution of this bound state to the pressure of the thermal gas of the system by using the $S$-matrix formalism involving the derivative of the phase-shift scattering. Our analysis, which is based on an unitarized one-loop resumed approach which renders the theory finite and well-defined for each value of the coupling constant, leads to following main results: (i) We generalize the phase-shift formula in order to take into account within a unique formal approach the two-particle interaction as well as the bound state (if existent). (ii) textit{On the one hand}, the number density of the bound state in the system at a certain temperature $T$ is obtained by the standard thermal integral; this is the case for any binding energy, even if it is much smaller than the temperature of the thermal gas. (iii) textit{On the other hand}, the contribution of the bound state to the total pressure is partly -- but not completely -- canceled by the two-particle interaction contribution to the pressure. (iv) The pressure as function of the coupling constant is textit{continuous} also at the critical coupling for the bound state formation: the jump in pressure due to the sudden appearance of the bound state is exactly canceled by an analogous jump (but with opposite sign) of the interaction contribution to the pressure.
We show that large n-particle production rates derived in the semiclassical Higgsplosion limit of scalar field theoretical models with spontaneous symmetry breaking, are consistent with general principles of localizable quantum field theory. The stri
In a scalar theory which we use as a simplified model for the Higgs sector, we adopt the semiclassical formalism of Son for computations of $n$-particle production cross-sections in the high-multiplicity $nto infty$ weak-coupling $lambda to 0$ regime
A quantum field theoretical model for the dynamics of the disoriented chiral condensate is presented. A unified approach to relate the quantum field theory directly to the formation, decay and signals of the DCC and its evolution is taken. We use a b
Recently a formalism for a direct treatment of the Faddeev equation for the three-nucleon bound state in three dimensions has been proposed. It relies on an operator representation of the Faddeev component in the momentum space and leads to a finite
The formation of meta-stable dark matter bound states in coannihilating scenarios could efficiently occur through the scattering with a variety of Standard Model bath particles, where light bosons during the electroweak cross over or even massless ph