ﻻ يوجد ملخص باللغة العربية
We find that the recently developed kinetic theories with spin for massive and massless fermions are smoothly connected. By introducing a reference-frame vector, we decompose the dipole-moment tensor into electric and magnetic dipole moments. We show that the axial-vector component of the Wigner function contains a contribution from the transverse magnetic dipole moment which accounts for the transverse spin degree of freedom (DOF) and vanishes smoothly in the massless limit. As a result, the kinetic equations, describing four DOF for massive fermions, becomes smoothly the chiral kinetic equations describing two DOF in the massless limit. We also confirm the small-mass behavior of the Wigner function by explicit calculation using a Gaussian wave packet.
We present the complete first order relativistic quantum kinetic theory with spin for massive fermions derived from the Wigner function formalism in a concise form that shows explicitly how the 32 Wigner equations reduce to 4 independent transport eq
We give a brief overview of the kinetic theory for spin-1/2 fermions in Wigner function formulism. The chiral and spin kinetic equations can be derived from equations for Wigner functions. A general Wigner function has 16 components which satisfy 32
We studied the $m=0$ limit of different components of Wigner functions for massive fermions. Comparing with the chiral kinetic theory, we separated the vanishing part and non-vanishing part for vector and axial vector components, up to the first orde
The first order hydrodynamic evolution equations for the shear stress tensor, the bulk viscous pressure and the charge current have been studied for a system of quarks and gluons, with a non-vanishing quark chemical potential and finite quark mass. T
We revisit the chiral anomaly in the quantum kinetic theory in the Wigner function formalism under the background field approximation. Our results show that the chiral anomaly is actually from the Dirac sea or the vacuum contribution in the un-normal