Non-homogeneous gauge ground state solutions in a six-dimensional gauge model in the presence of non-zero extended fermionic charge density fluctuations are reviewed and fully reinterpreted.
We study analysis aspects of the sixth order GJMS operator $P_g^6$. Under conformal normal coordinates around a point, the expansions of Greens function of $P_g^6$ with pole at this point are presented. As a starting point of the study of $P_g^6$, we
manage to give some existence results of prescribed $Q$-curvature problem on Einstein manifolds. One among them is that for $n geq 10$, let $(M^n,g)$ be a closed Einstein manifold of positive scalar curvature and $f$ a smooth positive function in $M$. If the Weyl tensor is nonzero at a maximum point of $f$ and $f$ satisfies a vanishing order condition at this maximum point, then there exists a conformal metric $tilde g$ of $g$ such that its $Q$-curvature $Q_{tilde g}^6$ equals $f$.
Dependence of Greens functions for the Curci-Ferrari model on the parameter resembling the gauge parameter in massless Yang-Mills theories is investigated. It is shown that the generating functional of vertex functions (effective action) depends on this parameter on-shell.
Recently Randjbar-Daemi and Shaposhnikov put forward a 4-dimensional effective QED coming from a Nielsen-Olesen vortex solution of the abelian Higgs model with fermions coupled to gravity in D=6. However, exploring possible physical consequences of s
uch an effective QED was left open. In this letter we study the corresponding effective Casimir effect. We find that the extra dimensions yield fifth and third inverse powers in the separation between plates for the modified Casimir force which are in conflict with known experiments, thus reducing the phenomenological viability of the model.
We consider the unitary Abelian Higgs model and investigate its spectral functions at one-loop order. This analysis allows to disentangle what is physical and what is not at the level of the elementary particle propagators, in conjunction with the Ni
elsen identities. We highlight the role of the tadpole graphs and the gauge choices to get sensible results. We also introduce an Abelian Curci-Ferrari action coupled to a scalar field to model a massive photon which, like the non-Abelian Curci-Ferarri model, is left invariant by a modified non-nilpotent BRST symmetry. We clearly illustrate its non-unitary nature directly from the spectral function viewpoint. This provides a functional analogue of the Ojima observation in the canonical formalism: there are ghost states with nonzero norm in the BRST-invariant states of the Curci-Ferrari model.
In this note we discuss a possible holographic dual of the two dimensional conformal field theory associated with the world-sheet of a macroscopic superstring in a compactification on four-torus. We assume the near horizon geometry of the black strin
g has symmetries of $AdS_3times S^3times T^4$ and construct a sigma model in the bulk. Analyzing the symmetries of the bulk theory and comparing them with those of the CFT in a special light-cone gauge we find agreement between global symmetries. Due to non-standard gauge realization it is not clear how affine symmetries can be realized.