ﻻ يوجد ملخص باللغة العربية
The hadronic shower longitudinal and lateral leakages and its effect on the pion response and energy resolution of iron-scintillator barrel hadron prototype calorimeter with longitudinal tile configuration with a thickness of 9.4 nuclear interaction lengths have been investigated. The results are based on 100 GeV pion beam data at incidence angle $Theta = 10^o$ at impact point Z in the range from - 36 to 20 cm which were obtained during test beam period in May 1995 with setup equipped scintillator detector planes placed behind and back of the calorimeter. The fraction of the energy of 100 GeV pions at $Theta = 10^o$ leaking out at the back of this calorimeter amounts to 1.8 % and agrees with the one for a conventional iron-scintillator calorimeter. Unexpected behaviour of the energy resolution as a function of leakage is observed: 6 % lateral leakage lead to 18 % improving of energy resolution in compare with the showers without leakage. The measured values of longitudinal punchthrough probability $(18 pm 1) %$ and $(20 pm 1) %$ for two different hit definitions of leaking events agree with the earlier measurement for our calorimeter and with the one for a conventional iron-scintillator calorimeter with the same nuclear interaction length thickness respectively. Due to more soft cut for hit definition in the leakage detectors the measured value of longitudinal punchthrough probability more corresponds to the calculated iron equivalent length $L_{Fe} = 158 cm$.
The lateral and longitudinal profiles of the hadronic showers detected by iron-scintillator tile hadron calorimeter with longitudinal tile configuration have been investigated. The results are based on 100 GeV pion beam data. Due to the beam scan pro
The detailed experimental information about the electron and pion responses, the electron energy resolution and the e/h ratio as a function of incident energy E, impact point Z and incidence angle $Theta$ of the Module-0 of the iron-scintillator barr
The detailed information about electron response, electron energy resolution and e/h ratio as a function of incident energy E, impact point Z and incidence angle $Theta$ of iron-scintillator hadron prototype calorimeter with longitudinal tile configu
The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80
The CALICE collaboration is presently constructing a test hadron calorimeter (HCAL) with 7620 scintillator tiles read out by novel photo-detectors - Silicon Photomultipliers (SiPMs). This prototype is the first device which uses SiPMs on a large scal