ﻻ يوجد ملخص باللغة العربية
The detailed experimental information about the electron and pion responses, the electron energy resolution and the e/h ratio as a function of incident energy E, impact point Z and incidence angle $Theta$ of the Module-0 of the iron-scintillator barrel hadron calorimeter with the longitudinal tile configuration is presented. The results are based on the electron and pion beams data for E = 10, 20, 60, 80, 100 and 180 GeV at $eta$ = -0.25 and -0.55, which have been obtained during the test beam period in 1996. The results are compared with the existing experimental data of TILECAL 1m prototype modules, various iron-scintillator calorimeters and with some Monte Carlo calculations.
The e/$pi$ ratio for the Barrel Combined Calorimeter Prototype, composed from electromagnetic LAr calorimeter and hadronic Tile calorimter was investigated. Response of Combined Calorimeter on pions and electrons in the energy region 20 - 300 GeV was
The lateral and longitudinal profiles of the hadronic showers detected by iron-scintillator tile hadron calorimeter with longitudinal tile configuration have been investigated. The results are based on 100 GeV pion beam data. Due to the beam scan pro
Hadron energy reconstruction for the Atlas barrel prototype combined calorimeter, consisting of the lead-liquid argon electromagnetic part and the iron-scintillator hadronic part, in the framework of the non-parametrical method has been fulfilled. Th
We report on the performance of a prototype CMS Hadron Barrel Calorimeter (HCAL) module in a test beam. The prototype sampling calorimeter used copper absorber plates and scintillator tiles with wavelength shifting fibers for readout. Placing a lead
The hadronic shower longitudinal and lateral leakages and its effect on the pion response and energy resolution of iron-scintillator barrel hadron prototype calorimeter with longitudinal tile configuration with a thickness of 9.4 nuclear interaction