ﻻ يوجد ملخص باللغة العربية
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.
It is shown that a general radial conformal Killing vector in Minkowski space-time can be associated to a generator of time evolution in conformal quantum mechanics. Among these conformal Killing vectors one finds a class which maps causal diamonds i
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. I
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. The
We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure diffe
A new idea for the quantization of dynamic systems, as well as space time itself, using a stochastic metric is proposed. The quantum mechanics of a mass point is constructed on a space time manifold using a stochastic metric. A stochastic metric spac