تمت استعراض بعض الجوانب المتعلقة بالعلاقة بين النظرية الشويدينجرية العادية والوصف البوليمري في هذا البحث. يتكون البحث من جزءين. في الجزء الأول، نحدد الكينيكا البوليمرية بدءاً من النظرية الشويدينجرية العادية ونظهر أن الوصف البوليمري يظهر كحدود مناسب. في الجزء الثاني، نناقش الحدود المتجاوزة لهذه النظرية، أي العكس الذي يبدأ من النظرية الكينيكية المقطعية ويحاول استعادة النظرية الشويدينجرية العادية. نناقش عدة أمثلة من الاهتمام، بما في ذلك الاهتزاز الهندسي، الجسيم الحر ونموذج سياسي بسيط.
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical co
The classical limit of polymer quantum theories yields a one parameter family of `effective theories labeled by lambda. Here we consider such families for constrained theories and pose the problem of taking the `continuum limit, lambda -> 0. We put f
A new idea for the quantization of dynamic systems, as well as space time itself, using a stochastic metric is proposed. The quantum mechanics of a mass point is constructed on a space time manifold using a stochastic metric. A stochastic metric spac
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to
The notions of stress and hyperstress are anchored in 3-dimensional continuum mechanics. Within the framework of the 4-dimensional spacetime continuum, stress and hyperstress translate into the energy-momentum and the hypermomentum current, respectiv