ﻻ يوجد ملخص باللغة العربية
Kundt spacetimes are of great importance in general relativity in 4 dimensions and have a number of topical applications in higher dimensions in the context of string theory. The degenerate Kundt spacetimes have many special and unique mathematical properties, including their invariant curvature structure and their holonomy structure. We provide a rigorous geometrical kinematical definition of the general Kundt spacetime in 4 dimensions; essentially a Kundt spacetime is defined as one admitting a null vector that is geodesic, expansion-free, shear-free and twist-free. A Kundt spacetime is said to be degenerate if the preferred kinematic and curvature null frames are all aligned. The degenerate Kundt spacetimes are the only spacetimes in 4 dimensions that are not $mathcal{I}$-non-degenerate, so that they are not determined by their scalar polynomial curvature invariants. We first discuss the non-aligned Kundt spacetimes, and then turn our attention to the degenerate Kundt spacetimes. The degenerate Kundt spacetimes are classified algebraically by the Riemann tensor and its covariant derivatives in the aligned kinematic frame; as an example, we classify Riemann type D degenerate Kundt spacetimes in which $ abla(Riem), abla^{(2)}(Riem)$ are also of type D. We discuss other local characteristics of the degenerate Kundt spacetimes. Finally, we discuss degenerate Kundt spacetimes in higher dimensions.
Memory effects in the exact Kundt wave spacetimes are shown to arise in the behaviour of geodesics in such spacetimes. The types of Kundt spacetimes we consider here are direct products of the form $H^2times M(1,1)$ and $S^2times M(1,1)$. Both geomet
In recent literature there appeared conflicting claims about whether the Ozsvath-Robinson-Rozga family of type N electrovac spacetimes of the Kundt class with $Lambda$ is complete. We show that indeed it is.
A pseudo-Riemannian manifold is called CSI if all scalar polynomial invariants constructed from the curvature tensor and its covariant derivatives are constant. In the Lorentzian case, the CSI spacetimes have been studied extensively due to their app
We present the complete family of space-times with a non-expanding, shear-free, twist-free, geodesic principal null congruence (Kundt waves) that are of algebraic type III and for which the cosmological constant ($Lambda_c$) is non-zero. The possible
In our previous paper [Phys. Rev. D 89 (2014) 124029], cited as [1], we attempted to find Robinson-Trautman-type solutions of Einsteins equations representing gyratonic sources (matter field in the form of an aligned null fluid, or particles propagat