ترغب بنشر مسار تعليمي؟ اضغط هنا

Pervasive Service Architecture for a Digital Business Ecosystem

57   0   0.0 ( 0 )
 نشر من قبل Gerard Briscoe Mr
 تاريخ النشر 2004
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present ideas and architectural principles upon which we are basing the development of a distributed, open-source infrastructure that, in turn, will support the expression of business models, the dynamic composition of software services, and the optimisation of service chains through automatic self-organising and evolutionary algorithms derived from biology. The target users are small and medium-sized enterprises (SMEs). We call the collection of the infrastructure, the software services, and the SMEs a Digital Business Ecosystem (DBE).



قيم البحث

اقرأ أيضاً

133 - Zhiyuan Wang , Lin Gao , Tong Wang 2020
In mobile Internet ecosystem, Mobile Users (MUs) purchase wireless data services from Internet Service Provider (ISP) to access to Internet and acquire the interested content services (e.g., online game) from Content Provider (CP). The popularity of intelligent functions (e.g., AI and 3D modeling) increases the computation-intensity of the content services, leading to a growing computation pressure for the MUs resource-limited devices. To this end, edge computing service is emerging as a promising approach to alleviate the MUs computation pressure while keeping their quality-of-service, via offloading some computation tasks of MUs to edge (computing) servers deployed at the local network edge. Thus, Edge Service Provider (ESP), who deploys the edge servers and offers the edge computing service, becomes an upcoming new stakeholder in the ecosystem. In this work, we study the economic interactions of MUs, ISP, CP, and ESP in the new ecosystem with edge computing service, where MUs can acquire the computation-intensive content services (offered by CP) and offload some computation tasks, together with the necessary raw input data, to edge servers (deployed by ESP) through ISP. We first study the MUs Joint Content Acquisition and Task Offloading (J-CATO) problem, which aims to maximize his long-term payoff. We derive the off-line solution with crucial insights, based on which we design an online strategy with provable performance. Then, we study the ESPs edge service monetization problem. We propose a pricing policy that can achieve a constant fraction of the ex-post optimal revenue with an extra constant loss for the ESP. Numerical results show that the edge computing service can stimulate the MUs content acquisition and improve the payoffs of MUs, ISP, and CP.
194 - G Briscoe 2012
We start with a discussion of the relevant literature, including Nature Inspired Computing as a framework in which to understand this work, and the process of biomimicry to be used in mimicking the necessary biological processes to create Digital Eco systems. We then consider the relevant theoretical ecology in creating the digital counterpart of a biological ecosystem, including the topological structure of ecosystems, and evolutionary processes within distributed environments. This leads to a discussion of the relevant fields from computer science for the creation of Digital Ecosystems, including evolutionary computing, Multi-Agent Systems, and Service-Oriented Architectures. We then define Ecosystem-Oriented Architectures for the creation of Digital Ecosystems, imbibed with the properties of self-organisation and scalability from biological ecosystems, including a novel form of distributed evolutionary computing.
Intelligence services are playing an increasingly important role in the operation of our society. Exploring the evolution mechanism, boundaries and challenges of service ecosystem is essential to our ability to realize smart society, reap its benefit s and prevent potential risks. We argue that this necessitates a broad scientific research agenda to study service ecosystem that incorporates and expands upon the disciplines of computer science and includes insights from across the sciences. We firstly outline a set of research issues that are fundamental to this emerging field, and then explores the technical, social, legal and institutional challenges on the study of service ecosystem.
The Internet of Things (IoT) envisions the creation of an environment where everyday objects (e.g. microwaves, fridges, cars, coffee machines, etc.) are connected to the internet and make users lives more productive, efficient, and convenient. During this process, everyday objects capture a vast amount of data that can be used to understand individuals and their behaviours. In the current IoT ecosystems, such data is collected and used only by the respective IoT solutions. There is no formal way to share data with external entities. We believe this is very efficient and unfair for users. We believe that users, as data owners, should be able to control, manage, and share data about them in any way that they choose and make or gain value out of them. To achieve this, we proposed the Sensing as a Service (S2aaS) model. In this paper, we discuss the Sensing as a Service ecosystem in terms of its architecture, components and related user interaction designs. This paper aims to highlight the weaknesses of the current IoT ecosystem and to explain how S2aaS would eliminate those weaknesses. We also discuss how an everyday user may engage with the S2aaS ecosystem and design challenges.
Up to now, it is not possible to obtain analytical solutions for complex molecular association processes (e.g. Molecule recognition in Signaling or catalysis). Instead Brownian Dynamics (BD) simulations are commonly used to estimate the rate of diffu sional association, e.g. to be later used in mesoscopic simulations. Meanwhile a portfolio of diffusional association (DA) methods have been developed that exploit BD. However, DA methods do not clearly distinguish between modeling, simulation, and experiment settings. This hampers to classify and compare the existing methods with respect to, for instance model assumptions, simulation approximations or specific optimization strategies for steering the computation of trajectories. To address this deficiency we propose FADA (Flexible Architecture for Diffusional Association) - an architecture that allows the flexible definition of the experiment comprising a formal description of the model in SpacePi, different simulators, as well as validation and analysis methods. Based on the NAM (Northrup-Allison-McCammon) method, which forms the basis of many existing DA methods, we illustrate the structure and functioning of FADA. A discussion of future validation experiments illuminates how the FADA can be exploited in order to estimate reaction rates and how validation techniques may be applied to validate additional features of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا