ترغب بنشر مسار تعليمي؟ اضغط هنا

A flexible architecture for modeling and simulation of diffusional association

223   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

Up to now, it is not possible to obtain analytical solutions for complex molecular association processes (e.g. Molecule recognition in Signaling or catalysis). Instead Brownian Dynamics (BD) simulations are commonly used to estimate the rate of diffusional association, e.g. to be later used in mesoscopic simulations. Meanwhile a portfolio of diffusional association (DA) methods have been developed that exploit BD. However, DA methods do not clearly distinguish between modeling, simulation, and experiment settings. This hampers to classify and compare the existing methods with respect to, for instance model assumptions, simulation approximations or specific optimization strategies for steering the computation of trajectories. To address this deficiency we propose FADA (Flexible Architecture for Diffusional Association) - an architecture that allows the flexible definition of the experiment comprising a formal description of the model in SpacePi, different simulators, as well as validation and analysis methods. Based on the NAM (Northrup-Allison-McCammon) method, which forms the basis of many existing DA methods, we illustrate the structure and functioning of FADA. A discussion of future validation experiments illuminates how the FADA can be exploited in order to estimate reaction rates and how validation techniques may be applied to validate additional features of the model.



قيم البحث

اقرأ أيضاً

137 - Giulio Caravagna 2010
Delays in biological systems may be used to model events for which the underlying dynamics cannot be precisely observed, or to provide abstraction of some behavior of the system resulting more compact models. In this paper we enrich the stochastic pr ocess algebra Bio-PEPA, with the possibility of assigning delays to actions, yielding a new non-Markovian process algebra: Bio-PEPAd. This is a conservative extension meaning that the original syntax of Bio-PEPA is retained and the delay specification which can now be associated with actions may be added to existing Bio-PEPA models. The semantics of the firing of the actions with delays is the delay-as-duration approach, earlier presented in papers on the stochastic simulation of biological systems with delays. These semantics of the algebra are given in the Starting-Terminating style, meaning that the state and the completion of an action are observed as two separate events, as required by delays. Furthermore we outline how to perform stochastic simulation of Bio-PEPAd systems and how to automatically translate a Bio-PEPAd system into a set of Delay Differential Equations, the deterministic framework for modeling of biological systems with delays. We end the paper with two example models of biological systems with delays to illustrate the approach.
Semantic equivalences are used in process algebra to capture the notion of similar behaviour, and this paper proposes a semi-quantitative equivalence for a stochastic process algebra developed for biological modelling. We consider abstracting away fr om fast reactions as suggested by the Quasi-Steady-State Assumption. We define a fast-slow bisimilarity based on this idea. We also show congruence under an appropriate condition for the cooperation operator of Bio-PEPA. The condition requires that there is no synchronisation over fast actions, and this distinguishes fast-slow bisimilarity from weak bisimilarity. We also show congruence for an operator which extends the reactions available for a species. We characterise models for which it is only necessary to consider the matching of slow transitions and we illustrate the equivalence on two models of competitive inhibition.
Developing automated and semi-automated solutions for reconstructing wiring diagrams of the brain from electron micrographs is important for advancing the field of connectomics. While the ultimate goal is to generate a graph of neuron connectivity, m ost prior automated methods have focused on volume segmentation rather than explicit graph estimation. In these approaches, one of the key, commonly occurring error modes is dendritic shaft-spine fragmentation. We posit that directly addressing this problem of connection identification may provide critical insight into estimating more accurate brain graphs. To this end, we develop a network-centric approach motivated by biological priors image grammars. We build a computer vision pipeline to reconnect fragmented spines to their parent dendrites using both fully-automated and semi-automated approaches. Our experiments show we can learn valid connections despite uncertain segmentation paths. We curate the first known reference dataset for analyzing the performance of various spine-shaft algorithms and demonstrate promising results that recover many previously lost connections. Our automated approach improves the local subgraph score by more than four times and the full graph score by 60 percent. These data, results, and evaluation tools are all available to the broader scientific community. This reframing of the connectomics problem illustrates a semantic, biologically inspired solution to remedy a major problem with neuron tracking.
A high fidelity multi-physics Eulerian computational framework is presented for the simulation of supersonic parachute inflation during Mars landing. Unlike previous investigations in this area, the framework takes into account an initial folding pat tern of the parachute, the flow compressibility effect on the fabric material porosity, and the interactions between supersonic fluid flows and the suspension lines. Several adaptive mesh refinement (AMR)-enabled, large edge simulation (LES)-based, simulations of a full-size disk-gap-band (DGB) parachute inflating in the low-density, low-pressure, carbon dioxide (CO2) Martian atmosphere are reported. The comparison of the drag histories and the first peak forces between the simulation results and experimental data collected during the NASA Curiosity Rovers Mars atmospheric entry shows reasonable agreements. Furthermore, a rudimentary material failure analysis is performed to provide an estimate of the safety factor for the parachute decelerator system. The proposed framework demonstrates the potential of using Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI)-based simulation tools for future supersonic parachute design.
Scientists and engineers employ stochastic numerical simulators to model empirically observed phenomena. In contrast to purely statistical models, simulators express scientific principles that provide powerful inductive biases, improve generalization to new data or scenarios and allow for fewer, more interpretable and domain-relevant parameters. Despite these advantages, tuning a simulators parameters so that its outputs match data is challenging. Simulation-based inference (SBI) seeks to identify parameter sets that a) are compatible with prior knowledge and b) match empirical observations. Importantly, SBI does not seek to recover a single best data-compatible parameter set, but rather to identify all high probability regions of parameter space that explain observed data, and thereby to quantify parameter uncertainty. In Bayesian terminology, SBI aims to retrieve the posterior distribution over the parameters of interest. In contrast to conventional Bayesian inference, SBI is also applicable when one can run model simulations, but no formula or algorithm exists for evaluating the probability of data given parameters, i.e. the likelihood. We present $texttt{sbi}$, a PyTorch-based package that implements SBI algorithms based on neural networks. $texttt{sbi}$ facilitates inference on black-box simulators for practising scientists and engineers by providing a unified interface to state-of-the-art algorithms together with documentation and tutorials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا