ترغب بنشر مسار تعليمي؟ اضغط هنا

Service Ecosystem: A Lens of Smart Society

114   0   0.0 ( 0 )
 نشر من قبل Xiao Xue
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Intelligence services are playing an increasingly important role in the operation of our society. Exploring the evolution mechanism, boundaries and challenges of service ecosystem is essential to our ability to realize smart society, reap its benefits and prevent potential risks. We argue that this necessitates a broad scientific research agenda to study service ecosystem that incorporates and expands upon the disciplines of computer science and includes insights from across the sciences. We firstly outline a set of research issues that are fundamental to this emerging field, and then explores the technical, social, legal and institutional challenges on the study of service ecosystem.



قيم البحث

اقرأ أيضاً

Computing devices are vital to all areas of modern life and permeate every aspect of our society. The ubiquity of computing and our reliance on it has been accelerated and amplified by the COVID-19 pandemic. From education to work environments to hea lthcare to defense to entertainment - it is hard to imagine a segment of modern life that is not touched by computing. The security of computers, systems, and applications has been an active area of research in computer science for decades. However, with the confluence of both the scale of interconnected systems and increased adoption of artificial intelligence, there are many research challenges the community must face so that our society can continue to benefit and risks are minimized, not multiplied. Those challenges range from security and trust of the information ecosystem to adversarial artificial intelligence and machine learning. Along with basic research challenges, more often than not, securing a system happens after the design or even deployment, meaning the security community is routinely playing catch-up and attempting to patch vulnerabilities that could be exploited any minute. While security measures such as encryption and authentication have been widely adopted, questions of security tend to be secondary to application capability. There needs to be a sea-change in the way we approach this critically important aspect of the problem: new incentives and education are at the core of this change. Now is the time to refocus research community efforts on developing interconnected technologies with security baked in by design and creating an ecosystem that ensures adoption of promising research developments. To realize this vision, two additional elements of the ecosystem are necessary - proper incentive structures for adoption and an educated citizenry that is well versed in vulnerabilities and risks.
In this paper we present ideas and architectural principles upon which we are basing the development of a distributed, open-source infrastructure that, in turn, will support the expression of business models, the dynamic composition of software servi ces, and the optimisation of service chains through automatic self-organising and evolutionary algorithms derived from biology. The target users are small and medium-sized enterprises (SMEs). We call the collection of the infrastructure, the software services, and the SMEs a Digital Business Ecosystem (DBE).
We describe an ecosystem for teaching data science (DS) to engineers which blends theory, methods, and applications, developed at the Faculty of Physical and Mathematical Sciences, Universidad de Chile, over the last three years. This initiative has been motivated by the increasing demand for DS qualifications both from academic and professional environments. The ecosystem is distributed in a collaborative fashion across three departments in the above Faculty and includes postgraduate programmes, courses, professional diplomas, data repositories, laboratories, trainee programmes, and internships. By sharing our teaching principles and the innovative components of our approach to teaching DS, we hope our experience can be useful to those developing their own DS programmes and ecosystems. The open challenges and future plans for our ecosystem are also discussed at the end of the article.
The introduction of Internet of Things (IoT) ecosystems into personal homes and businesses prompts the idea that such ecosystems contain residual data, which can be used as digital evidence in court proceedings. However, the forensic examination of I oT ecosystems introduces a number of investigative problems for the digital forensics community. One of these problems is the limited availability of practical processes and techniques to guide the preservation and analysis of residual data from these ecosystems. Focusing on a detailed case study of the iHealth Smart Scale ecosystem, we present an empirical demonstration of practical techniques to recover residual data from different evidence sources within a smart scale ecosystem. We also document the artifacts that can be recovered from a smart scale ecosystem, which could inform a digital (forensic) investigation. The findings in this research provides a foundation for future studies regarding the development of processes and techniques suitable for extracting and examining residual data from IoT ecosystems.
72 - Ronald de Wolf 2017
This paper considers the potential impact that the nascent technology of quantum computing may have on society. It focuses on three areas: cryptography, optimization, and simulation of quantum systems. We will also discuss some ethical aspects of these developments, and ways to mitigate the risks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا