ﻻ يوجد ملخص باللغة العربية
We present a new type of temperature driven spin reorientation transition (SRT) in thin films. It can occur when the lattice and the shape anisotropy favor different easy directions of the magnetization. Due to different temperature dependencies of the two contributions the effective anisotropy may change its sign and thus the direction of the magnetization as a function of temperature may change. Contrary to the well-known reorientation transition caused by competing surface and bulk anisotropy contributions the reorientation that we discuss is also found in film systems with a uniform lattice anisotropy. The results of our theoretical model study may have experimental relevance for film systems with positive lattice anisotropy, as e.g. thin iron films grown on copper.
The design and fabrication of materials that exhibit both semiconducting and magnetic properties for spintronics and quantum computing has proven difficult. Important starting points are high-purity thin films as well as fundamental theoretical under
The finite-temperature magnetism of a monolayer on a bcc (110) surface was examined using a model Hamiltonian containing ferromagnetic or antiferromagnetic exchange interactions, Dzyaloshinsky-Moriya interactions and easy-axis on-site anisotropy. We
A quantitative mathematical model for the critical thickness of strained epitaxial metal films is presented, at which the magnetic moment experiences a reorientation from in-plane to perpendicular magnetic anisotropy. The model is based on the minimu
A magnetic-field-driven transition from metallic- to semiconducting-type behavior in the basal-plane resistance takes place in highly oriented pyrolytic graphite at a field $H_c sim 1~$kOe applied along the hexagonal c-axis. The analysis of the data
X-ray magnetic circular and linear dichroism (XMCD and XMLD) have been used to investigate the Fe magnetic response during the spin reorientation transition (SRT) in TmFeO3. These experiments are complemented with resonant magnetic diffraction experi