ﻻ يوجد ملخص باللغة العربية
The design and fabrication of materials that exhibit both semiconducting and magnetic properties for spintronics and quantum computing has proven difficult. Important starting points are high-purity thin films as well as fundamental theoretical understanding of the magnetism. Here we show that small molecules have great potential in this area, due to ease of insertion of localised spins in organic frameworks and both chemical and structural purity. In particular, we demonstrate that archetypal molecular semiconductors, namely the metal phthalocyanines (Pc), can be readily fabricated as thin film quantum antiferromagnets, important precursors to a solid state quantum computer. Their magnetic state can be switched via fabrication steps which modify the film structure, offering practical routes into information processing. Theoretical calculations show that a new mechanism, which is the molecular analogue of the interactions between magnetic ions in metals, is responsible for the magnetic states. Our combination of theory and experiments opens the field of organic thin film magnetic engineering.
Single phase nickel-cobalt-titanate thin films with a formula A1+2xTi1-xO3, where A is Ni2+,Co2+ and -0.25<x<1, were grown by pulsed laser deposition on sapphire substrates. There is a large window in which both Ni/Co ratio and x can be chosen indepe
We present a new type of temperature driven spin reorientation transition (SRT) in thin films. It can occur when the lattice and the shape anisotropy favor different easy directions of the magnetization. Due to different temperature dependencies of t
Room temperature ferromagnetism was observed in n-type Fe-doped In2O3 thin films deposited on c-cut sapphire substrates by pulsed laser deposition. Structure, magnetism, composition, and transport studies indicated that Fe occupied the In sites of th
The difference in the transmission for left and right circularly polarised light though thin films on substrates in a magnetic field is used to obtain the magnetic circular dichroism of the film. However there are reflections at all the interfaces an
For uniaxial easy axis films, properties of magnetic domains are usually described within the Kittel model, which assumes that domain walls are much thinner than the domains. In this work we present a simple model that includes a proper description o