ﻻ يوجد ملخص باللغة العربية
We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve as a predictive method for the hard sphere pair correlation function g(r). The reversible cavity creation work is analyzed both for a single spherical cavity of arbitrary size, as well as for a pair of identical such spherical cavities with variable center-to-center separation. These quantities lead directly to prediction of g(r). Smooth connection conditions have been identified between the small-cavity situation where the work can be exactly and completely expressed in terms of g(r), and the large-cavity regime where macroscopic properties become relevant. Closure conditions emerge which produce a nonlinear integral equation that must be satisfied by the pair correlation function. This integral equation has a structure which straightforwardly generates a solution that is a power series in density. The results of this series replicate the exact second and third virial coefficients for the hard sphere system via the contact value of the pair correlation function. The predicted fourth virial coefficient is approximately 0.6 percent lower than the known exact value. Detailed numerical analysis of the nonlinear integral equation has been deferred to the sequel (following paper)
We use the extension of scaled particle theory (ESPT) presented in the accompanying paper [Stillinger et al. J. Chem. Phys. xxx, xxx (2007)] to calculate numerically pair correlation function of the hard sphere fluid over the density range $0leq rhos
Extensions to kinetic theory and hydrodynamic models are proposed that account for the existence of multi-particle contacts. In the presence of multi-particle contacts (involving elastic, reversible, potential contact energy), dissipation of the tran
We show how to generalize the Lattice Switch Monte Carlo method to calculate the phase diagram of a binary system. A global coordinate transformation is combined with a modification of particle diameters, enabling the multi-component system in questi
A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are