ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium thermodynamics in sheared hard-sphere materials

276   0   0.0 ( 0 )
 نشر من قبل Charles Lieou
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are developed within a statistical thermodynamic framework analogous to that which has been used in the analysis of molecular glasses. For hard spheres, the system volume $V$ replaces the internal energy $U$ as a function of entropy $S$ in conventional statistical mechanics. In place of the effective temperature, the compactivity $X = partial V / partial S$ characterizes the internal state of disorder. We derive the STZ equations of motion for a granular material accordingly, and predict the strain rate as a function of the ratio of the shear stress to the pressure for different values of a dimensionless, temperature-like variable near a jamming transition. We use a simplified version of our theory to interpret numerical simulations by Haxton, Schmiedeberg and Liu, and in this way are able to obtain useful insights about internal rate factors and relations between jamming and glass transitions.



قيم البحث

اقرأ أيضاً

A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte Carlo (DSMC) algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nano-particle suspended in a compressible solvent.
231 - A. Sarracino , A. Vulpiani 2019
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suita ble correlation functions computed in the unperperturbed dynamics. In these relations, typically one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in non-standard cases, including driven granular media, systems with a multiscale structure, active matter and systems showing anomalous diffusion.
161 - M. Lopez de Haro , S. B. Yuste , 2007
An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consisten t formulation, thus improving and extending the known analytical results of the Percus-Yevick theory. Approximate expressions for the contact values of the radial distribution functions and the corresponding analytical equations of state are also discussed. Extensions of this methodology to related systems, such as sticky hard spheres and square-well fluids, as well as its use in connection with the perturbation theory of fluids are briefly addressed.
As shown by early studies on mean-field models of the glass transition, the geometrical features of the energy landscape provide fundamental information on the dynamical transition at the Mode-Coupling temperature $T_d$. We show that active particles can serve as a useful tool for gaining insight into the topological crossover in model glass-formers. In such systems the landmark of the minima-to-saddle transition in the potential energy landscape, taking place in the proximity of $T_d$, is the critical slowing down of dynamics. Nevertheless, the critical slowing down is a bottleneck for numerical simulations and the possibility to take advantage of the new smart algorithms capable to thermalize down in the glass phase is attractive. Our proposal is to consider configurations equilibrated below the threshold and study their dynamics in the presence of a small amount of self-propulsion. As exemplified here from the study of the p-spin model, the presence of self-propulsion gives rise to critical off-equilibrium equal-time correlations at the minima-to-saddles crossover, correlations which are not hindered by the sluggish glassy dynamics.
Using the recently constructed covariant Ito-Langevin dynamics, we develop a covariant theory of non-equilibrium thermodynamics that is applicable to small systems with multiplicative noises and with slow variables forming curved manifolds. Assuming instantaneous detailed balance, we derive expressions for work, heat, entropy production, and free energy both at ensemble level, as well as at the level of individual dynamic trajectory. We also relate time-reversal asymmetry to entropy production, and derive its consequences such as fluctuation theorem and work relation. The theory is based on Ito-calculus, is fully covariant under time-independent nonlinear transformation of variables, and is applicable to systems strongly coupled to environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا