ﻻ يوجد ملخص باللغة العربية
It is shown that magnetic states and field-driven reorientation transitions in synthetic antiferromagnets crucially depend on contributions of higher-order anisotropies. A phenomenological macrospin model is derived to describe the magnetic states of two antiferromagnetically coupled magnetic thin film elements. The calculated phase diagrams show that magnetic states with out-of-plane magnetization, symmetric escaped spin-flop phases, exist in a broad range of the applied magnetic field. Due to the formation of such states and concomitant multidomain patterns, the switching processes in toggle magnetic random access memory devices (MRAM) can radically deviate from predictions within oversimplified models.
We simulate the switching behavior of nanoscale synthetic antiferromagnets (SAFs), inspired by recent experimental progress in spin-orbit-torque switching of crystal antiferromagnets. The SAF consists of two ferromagnetic thin films with in-plane bia
Magnetic solitons are twisted spin configurations, which are characterized by a topological integer (textit{Q}) and helicity ($gamma$). Due to their quasi-particle properties, relatively smaller size, and the potential to set themselves into motion w
The exchange coupling underlies ferroic magnetic coupling and is thus the key element that governs statics and dynamics of magnetic systems. This fundamental interaction comes in two flavors - symmetric and antisymmetric coupling. While symmetric cou
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. H
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers