ﻻ يوجد ملخص باللغة العربية
Magnetic solitons are twisted spin configurations, which are characterized by a topological integer (textit{Q}) and helicity ($gamma$). Due to their quasi-particle properties, relatively smaller size, and the potential to set themselves into motion with smaller critical current densities than domain walls, they hold promising aspects as bits of information in future magnetic logic and memory devices. System having Dzyaloshinskii-Moriya Interaction (DMI) prefers a particular rotational sense, which determines a single value of Q and $gamma$. However, the case of frustrated ferromagnet is of particular interest since solitons with different $Q$ and $gamma$ can be stabilized. Recently, higher order skyrmion($Q>2$) and coexistence of skyrmion and antiskyrmion in frustrated ferromagnets has been predicted using $J_1$--$J_2$--$J_3$ classical Heisenberg model. cite{zxcv} In this work, we modelled a synthetic antiferromagnet (SAF) system to co-exist both skyrmion and antiskyrmion, but without considering frustrated exchange interaction. The bottom layer of the SAF has isotropic DMI and the top layer has anisotropic DMI. The presence of antiskyrmion and skyrmion in the two different layers may induce magnetic frustration in the SAF. Here we have varied the strength of Ruderman--Kittel--Kasuya--Yosida (RKKY) coupling as a perturbation and observed 6 novel elliptical skyrmionic states. We have observed that skyrmionic states have a 3 fold degeneracy and another two fold degeneracy. We also report a novel elliptical Q = 0 state.
The exchange coupling underlies ferroic magnetic coupling and is thus the key element that governs statics and dynamics of magnetic systems. This fundamental interaction comes in two flavors - symmetric and antisymmetric coupling. While symmetric cou
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. H
It is shown that magnetic states and field-driven reorientation transitions in synthetic antiferromagnets crucially depend on contributions of higher-order anisotropies. A phenomenological macrospin model is derived to describe the magnetic states of
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers
We report in this study the current-induced-torque excitation of acoustic and optical modes in Ta/NiFe/Ru/NiFe/Ta synthetic antiferromagnet stacks grown on SiO2/Si substrates. The two Ta layers serve as spin torque sources with the opposite polarisat