ﻻ يوجد ملخص باللغة العربية
Gallium displays physical properties which can make it a potential element to produce metallic nanowires and high-conducting interconnects in nanoelectronics. Using first-principles pseudopotential plane method we showed that Ga can form stable metallic linear and zigzag monatomic chain structures. The interaction between individual Ga atom and single-wall carbon nanotube (SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT with Ga atom gives rise to donor states. Owing to a significant interaction between individual Ga atom and SWNT, continuous Ga coverage of the tube can be achieved. Ga nanowires produced by the coating of carbon nanotube templates are found to be stable and high conducting.
With the empirical bond polarizability model, the nonresonant Raman spectra of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial and torsional strains have been systematically studied by textit{ab initio} method. It is found
We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high sensitivity time-resolved photo-luminescence experiments. Measurements from cryogenic to room temperature allow us to identify t
We have used a femtosecond pump-probe impulsive Raman technique to explore the polarization dependence of coherent optical phonons in highly-purified and aligned semiconducting single-wall carbon nanotubes (SWCNTs). Coherent phonon spectra for the ra
Photoluminescence (PL) measurements of porphyrin-doped single wall carbon nanotubes (SWNT) were studied in sodium dodecylbenzenesulfonate (NaDDBS) aqueous dispersions. The PL spectra were used to draw PL maps were the maxima corresponds to absorption
We have studied current-driven domain wall motion in modified Ga_0.95Mn_0.05As Hall bar structures with perpendicular anisotropy by using spatially resolved Polar Magneto-Optical Kerr Effect Microscopy and micromagnetic simulation. Regardless of the