ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent monochromatic phonons in highly-purified semiconducting single-wall carbon nanotubes

185   0   0.0 ( 0 )
 نشر من قبل Muneaki Hase
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used a femtosecond pump-probe impulsive Raman technique to explore the polarization dependence of coherent optical phonons in highly-purified and aligned semiconducting single-wall carbon nanotubes (SWCNTs). Coherent phonon spectra for the radial breathing modes (RBMs) exhibit a different monochromatic frequency between the film and solution samples, indicating the presence of differing exciton excitation processes. By varying the polarization of the incident pump beam on the aligned SWCNT film, we found that the anisotropy of the coherent RBM excitation depends on the laser wavelength, which we consider to be associated with the resonant and off-resonant behavior of RBM excitation.



قيم البحث

اقرأ أيضاً

We report the observation of the intrinsic magnetic susceptibility of highly purified SWCNT samples prepared by a combination of acid treatment and density gradient ultracentrifugation (DGU). We observed that the diamagnetic susceptibility of SWCNTs increases linearly with increasing nanotube diameter. We found that the magnetic susceptibility divided by the diameter is a universal function of the scaled temperature. Furthermore, the estimated magnetic susceptibilities of pure semiconducting and pure metallic SWCNT samples suggest that they respond differently to changes in carrier density, which is consistent with theory. These findings provide experimental verification of the theoretically predicted diameter, temperature, and metallicity dependence of the magnetic susceptibility.
Semiconducting single-wall carbon nanotubes are classified into two types by means of orbital angular momentum of valley state, which is useful to study their low energy electronic properties in finite-length. The classification is given by an intege r $d$, which is the greatest common divisor of two integers $n$ and $m$ specifying the chirality of nanotubes, by analyzing cutting lines. For the case that $d$ is equal to or greater than four, two lowest subbands from two valleys have different angular momenta with respect to the nanotube axis. Reflecting the decoupling of two valleys, discrete energy levels in finite-length nanotubes exhibit nearly fourfold degeneracy and its small lift by the spin-orbit interaction. For the case that $d$ is less than or equal to two, in which two lowest subbands from two valleys have the same angular momentum, discrete levels exhibit lift of fourfold degeneracy reflecting the coupling of two valleys. Especially, two valleys are strongly coupled when the chirality is close to the armchair chirality. An effective one-dimensional lattice model is derived by extracting states with relevant angular momentum, which reveals the valley coupling in the eigenstates. A bulk-edge correspondence, relationship between number of edge states and the winding number calculated in the corresponding bulk system, is analytically shown by using the argument principle, which enables us to estimate the number of edge states from the bulk property. The number of edge states depends not only on the chirality but also on the shape of boundary.
188 - J.-H. Kim , K.-J. Yee , Y.-S. Lim 2011
We have studied the coherent dynamics of G-band phonons in single-walled carbon nanotubes through impulsive stimulated Stokes and anti-Stokes Raman scattering. The probe energy dependence of phonon amplitude as well as preferential occurrence between Stokes and anti-Stokes components in response to chirped-pulse excitation are well explained within our model. The temperature dependence of the observed dephasing rate clearly exhibits a thermally-activated component, with an activation energy that coincides with the frequency of the radial breathing mode (RBM). This fact provides a clear picture for the dephasing of optical phonons by random frequency modulation via interaction with the RBM through anharmonicity.
We found a giant Seebeck effect in semiconducting single-wall carbon nanotube (SWCNT) films, which exhibited a performance comparable to that of commercial Bi2Te3 alloys. Carrier doping of semiconducting SWCNT films further improved the thermoelectri c performance. These results were reproduced well by first-principles transport simulations based on a simple SWCNT junction model. These findings suggest strategies that pave the way for emerging printed, all-carbon, flexible thermoelectric devices.
454 - I. V. Bondarev 2011
The possibility of low-energy surface plasmon amplification by optically excited excitons in small-diameter single wall carbon nanotubes is theoretically demonstrated. The nonradiative exciton-plasmon energy transfer causes the buildup of the macrosc opic population numbers of coherent localized surface plasmons associated with high-intensity coherent local fields formed at nanoscale throughout the nanotube surface. These strong local fields can be used in a variety of new optoelectronic applications of carbon nanotubes, including near-field nonlinear-optical probing and sensing, optical switching, enhanced electromagnetic absorption, and materials nanoscale modification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا