ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-optical and micromagnetic simulation study the current driven domain wall motion in ferromagnetic (Ga,Mn)As

417   0   0.0 ( 0 )
 نشر من قبل Kaiyou Wang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied current-driven domain wall motion in modified Ga_0.95Mn_0.05As Hall bar structures with perpendicular anisotropy by using spatially resolved Polar Magneto-Optical Kerr Effect Microscopy and micromagnetic simulation. Regardless of the initial magnetic configuration, the domain wall propagates in the opposite direction to the current with critical current of 1~2x10^5A/cm^2. Considering the spin transfer torque term as well as various effective magnetic field terms, the micromagnetic simulation results are consistent with the experimental results. Our simulated and experimental results suggest that the spin-torque rather than Oersted field is the reason for current driven domain wall motion in this material.



قيم البحث

اقرأ أيضاً

We investigate the anisotropy of magnetic reversal and current-driven domain wall motion in annealed Ga_0.95Mn_0.05As thin films and Hall bar devices with perpendicular magnetic anisotropy. Hall bars with current direction along the [110] and [1-10] crystallographic axes are studied. The [110] device shows larger coercive field than the [1-10] device. Strong anisotropy is observed during magnetic reversal between [110] and [1-10] directions. A power law dependence is found for both devices between the critical current (JC) and the magnetization (M), with J_C is proportional to M^2.6. The domain wall motion is strongly influenced by the presence of local pinning centres.
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange in teraction. The direction of the domain wall motion can be controlled using the helicity of the laser. Secondly, the domain wall is attracted to the hot-spot generated by the focused laser. Unlike magnetic field driven domain wall depinning, these mechanisms directly drive domain wall motion, providing an optical tweezer like ability to position and locally probe domain walls.
Current-driven magnetic domain wall motion is demonstrated in the quaternary ferromagnetic semiconductor (Ga,Mn)(As,P) at temperatures well below the ferromagnetic transition temperature, with critical currents of the order 10^5Acm^-2. This is enable d by a much weaker domain wall pinning compared to (Ga,Mn)As layers grown on a strain-relaxed buffer layer. The critical current is shown to be comparable with theoretical predictions. The wide temperature range over which domain wall motion can be achieved indicates that this is a promising system for developing an improved understanding of spin-transfer torque in systems with strong spin-orbit interaction.
In order to explain recent experiments reporting a motion of magnetic domain walls (DW) in nanowires carrying a current, we propose a modification of the spin transfer torque term in the Landau-Lifchitz-Gilbert equation. We show that it explains, wit h reasonable parameters, the measured DW velocities as well as the variation of DW propagation field under current. We also introduce coercivity by considering rough wires. This leads to a finite DW propagation field and finite threshold current for DW propagation, hence we conclude that threshold currents are extrinsic. Some possible models that support this new term are discussed.
We report on current induced domain wall propagation in a patterned GaMnAs microwire with perpendicular magnetization. An unexpected slowing down of the propagation velocity has been found when the moving domain wall extends over only half of the wid th of the wire. This slowing down is related to the elongation of a longitudinal wall along the axis of the wire. By using an energy balance argument, the expected theoretical dependence of the velocity change has been calculated and compared with the experimental results. According to this, the energy associated to the longitudinal domain wall should change when a current passes through the wire. These results provide possible evidence of transverse spin diffusion along a longitudinal domain wall.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا