ﻻ يوجد ملخص باللغة العربية
We study in detail the ratchet-like dynamics of topological solitons in homogeneous nonlinear Klein-Gordon systems driven by a bi-harmonic force. By using a collective coordinate approach with two degrees of freedom, namely the center of the soliton, $X(t)$, and its width, $l(t)$, we show, first, that energy is inhomogeneously pumped into the system, generating as result a directed motion; and, second, that the breaking of the time shift symmetry gives rise to a resonance mechanism that takes place whenever the width $l(t)$ oscillates with at least one frequency of the external ac force. In addition, we show that for the appearance of soliton ratchets, it is also necesary to break the time-reversal symmetry. We analyze in detail the effects of dissipation in the system, calculating the average velocity of the soliton as a function of the ac force and the damping. We find current reversal phenomena depending on the parameter choice and discuss the important role played by the phases of the ac force. Our analytical calculations are confirmed by numerical simulations of the full partial differential equations of the sine-Gordon and $phi^4$ systems, which are seen to exhibit the same qualitative behavior. Our results are in agreement with recent experimental work on dissipation induced symmetry breaking.
Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential $V(x)$, which consists of periodically repeated cells with each cell containing an a
Klein-Gordon equations describe the dynamics of waves/particles in sub-atomic scales. For nonlinear Klein-Gordon equations, their breather solutions are usually known as time periodic solutions with the vanishing spatial-boundary condition. The exist
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted
We study the ladder operator on scalar fields, mapping a solution of the Klein-Gordon equation onto another solution with a different mass, when the operator is at most first order in derivatives. Imposing the commutation relation between the dAlembe
This article resolves some errors in the paper Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE 4 (2011) no. 3, 405-460. The errors are in the energy-critical cases in two and higher dimensions.