ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of soliton ratchets in inhomogeneous sine-Gordon systems

101   0   0.0 ( 0 )
 نشر من قبل Angel (Anxo) Sanchez
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential $V(x)$, which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions $x_{i}$. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential $U_{opt}$ that yields a maximal average soliton velocity. $U_{opt}$ essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system.



قيم البحث

اقرأ أيضاً

We study in detail the ratchet-like dynamics of topological solitons in homogeneous nonlinear Klein-Gordon systems driven by a bi-harmonic force. By using a collective coordinate approach with two degrees of freedom, namely the center of the soliton, $X(t)$, and its width, $l(t)$, we show, first, that energy is inhomogeneously pumped into the system, generating as result a directed motion; and, second, that the breaking of the time shift symmetry gives rise to a resonance mechanism that takes place whenever the width $l(t)$ oscillates with at least one frequency of the external ac force. In addition, we show that for the appearance of soliton ratchets, it is also necesary to break the time-reversal symmetry. We analyze in detail the effects of dissipation in the system, calculating the average velocity of the soliton as a function of the ac force and the damping. We find current reversal phenomena depending on the parameter choice and discuss the important role played by the phases of the ac force. Our analytical calculations are confirmed by numerical simulations of the full partial differential equations of the sine-Gordon and $phi^4$ systems, which are seen to exhibit the same qualitative behavior. Our results are in agreement with recent experimental work on dissipation induced symmetry breaking.
506 - Francesco Buccheri 2012
We present an expression for the generating function of correlation functions of the sine-Gordon integrable field theory on a cylinder, with compact space. This is derived from the Destri-De Vega integrable lattice regularization of the theory, formu lated as an inhomogeneous Heisenberg XXZ spin chain, and from more recent advances in the computations of spin form factors in the thermodynamic limit.
We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding mod el containing all the information both on the intra- and inter-well tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.
The Sine-Gordon - equivalently, the massive Thirring - Hamiltonian is ubiquitous in low-dimensional physics, with applications that range from cold atom and strongly correlated systems to quantum impurities. We study here its non-equilibrium dynamics using the quantum quench protocol - following the system as it evolves under the Sine-Gordon Hamiltonian from initial Mott type states with large potential barriers. By means of the Bethe Ansatz we calculate exactly the Loschmidt amplitude, the fidelity and work distribution characterizing these quenches for different values of the interaction strength. Some universal features are noted as well as an interesting duality relating quenches in different parameter regimes of the model.
68 - J. Peguiron , M. Grifoni 2004
A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in one model to strong dissipation in the other one, and vice versa. We apply this duality relation to investigate transport and rectification in ratchet potentials: From the linear mobility we infer ground-state delocalization for weak dissipation. We report reversals induced by adiabatic driving and temperature in the ratchet current and its dependence on the potential shape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا