ﻻ يوجد ملخص باللغة العربية
Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential $V(x)$, which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions $x_{i}$. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential $U_{opt}$ that yields a maximal average soliton velocity. $U_{opt}$ essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system.
We study in detail the ratchet-like dynamics of topological solitons in homogeneous nonlinear Klein-Gordon systems driven by a bi-harmonic force. By using a collective coordinate approach with two degrees of freedom, namely the center of the soliton,
We present an expression for the generating function of correlation functions of the sine-Gordon integrable field theory on a cylinder, with compact space. This is derived from the Destri-De Vega integrable lattice regularization of the theory, formu
We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding mod
The Sine-Gordon - equivalently, the massive Thirring - Hamiltonian is ubiquitous in low-dimensional physics, with applications that range from cold atom and strongly correlated systems to quantum impurities. We study here its non-equilibrium dynamics
A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in one model to strong dissipation in