ﻻ يوجد ملخص باللغة العربية
Klein-Gordon equations describe the dynamics of waves/particles in sub-atomic scales. For nonlinear Klein-Gordon equations, their breather solutions are usually known as time periodic solutions with the vanishing spatial-boundary condition. The existence of breather solution is known for the Sine-Gordon equations, while the Sine-Gordon equations are also known as the soliton equation. The breather solutions is a certain kind of time periodic solutions that are not only play an essential role in the bridging path to the chaotic dynamics, but provide multi-dimensional closed loops inside phase space. In this paper, based on the high-precision numerical scheme, the appearance of breather mode is studied for nonlinear Klein-Gordon equations with periodic boundary condition. The spatial periodic boundary condition is imposed, so that the breathing-type solution in our scope is periodic with respect both to time and space. In conclusion, the existence condition of space-time periodic solution is presented, and the compact manifolds inside the infinite-dimensional dynamical system is shown. The space-time breather solutions of Klein-Gordon equations can be a fundamental building block for the sub-atomic nonlinear dynamics.
The generalized perturbative reduction method is used to find the two-component vector breather solution of the nonlinear Klein-Gordon equation. It is shown that the nonlinear pulse oscillates with the sum and difference of frequencies and wave numbe
In this work, we revisit the question of stability of multibreather configurations, i.e., discrete breathers with multiple excited sites at the anti-continuum limit of uncoupled oscillators. We present two methods that yield quantitative predictions
We study in detail the ratchet-like dynamics of topological solitons in homogeneous nonlinear Klein-Gordon systems driven by a bi-harmonic force. By using a collective coordinate approach with two degrees of freedom, namely the center of the soliton,
We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the $phi^4$ variants thereof. We adapt an adiabatic invariant formulation recently developed for n
We study the scattering problems for the quadratic Klein-Gordon equations with radial initial data in the energy space. For 3D, we prove small data scattering, and for 4D, we prove large data scattering with mass below the ground state.