Polarization dependence of resonant anomalous surface x-ray scattering (RASXS) was studied for interfaces buried in electrolytes or in high-pressure gas. We demonstrate that RASXS exhibits strong polarization dependence when the surface is only slightly modified by adsorption of light elements such as carbon monoxide on platinum surfaces. s- and p-polarization RASXS data were simulated with the latest version of ab initio multiple scattering calculations (FEFF8.2). Elementary considerations are additionally presented for the origin of the polarization dependence in RASXS.
Resonance anomalous surface x-ray scattering (RASXS) technique was applied to electrochemical interface studies. It was used to determine the chemical states of electrochemically formed anodic oxide monolayers on platinum surface. It is shown that RA
SXS exhibits strong polarization dependence when the surface is significantly modified. The polarization dependence is demonstrated for three examples; anodic oxide formation, sulfate adsorption, and CO adsorption on platinum surfaces. s- and p- polarization RASXS data were simulated with the latest version of ab initio multiple scattering calculations (FEFF8.2). Elementary theoretical considerations are also presented for the origin of the polarization dependence in RASXS.
Surface X-ray scattering studies of electrochemical Stern layer are reported. The Stern layers formed at the interfaces of RuO2 (110) and (100) in 0.1 M CsF electrolyte are compared to the previously reported Stern layer on Pt(111) [Liu et al., J. Ph
ys. Chem. Lett., 9 (2018) 1265]. While the Cs+ density profiles at the potentials close to hydrogen evolution reaction are similar, the hydration layers intervening the surface and the Cs+ layer on RuO2 surfaces are significantly denser than the hydration layer on Pt(111) surface possibly due to the oxygen termination of RuO2 surfaces. We also discuss in-plane ordering in the Stern layer on Pt(111) surface.
We have studied in-gap states in epitaxial CoFe2O4(111), which potentially acts as a perfect spin filter, grown on a Al2O3(111)/Si(111) structure by using ellipsometry, Fe L2,3-edge x-ray absorption spectroscopy (XAS), and Fe L2,3-edge resonant inela
stic x-ray scattering (RIXS), and revealed the relation between the in-gap states and chemical defects due to the Fe2+ cations at the octahedral sites (Fe2+ (Oh) cations). The ellipsometry measurements showed the indirect band gap of 1.24 eV for the CoFe2O4 layer and the Fe L2,3-edge XAS confirmed the characteristic photon energy for the preferential excitation of the Fe2+ (Oh) cations. In the Fe L3-edge RIXS spectra, a band-gap excitation and an excitation whose energy is smaller than the band-gap energy (Eg = 1.24 eV) of CoF2O4, which we refer to as below-band-gap excitation (BBGE) hereafter, were observed. The intensity of the BBGE was strengthened at the preferential excitation energy of the Fe2+ (Oh) cations. In addition, the intensity of the BBGE was significantly increased when the thickness of the CoFe2O4 layer was decreased from 11 to 1.4 nm, which coincides with the increase in the site occupancy of the Fe2+ (Oh) cations with decreasing the thickness. These results indicate that the BBGE comes from the in-gap states of the Fe2+ (Oh) cations whose density increases near the heterointerface on the bottom Al2O3 layer. We have demonstrated that RIXS measurements and analyses in combination with ellipsometry and XAS are effective to provide an insight into in-gap states in thin-film oxide heterostructures.
We present the first resonant x-ray reflectivity measurements from a liquid surface. The surface structure of the liquid Hg-Au alloy system just beyond the solubility limit of 0.14at% Au in Hg had previously been shown to exhibit a unique surface pha
se characterized by a low-density surface region with a complicated temperature dependence. In this paper we present reflectivity measurements near the Au LIII edge, for 0.2at% Au in Hg at room temperature. The data are consistent with a concentration of Au in the surface region that can be no larger than about 30at%. These results rule out previous suggestions that pure Au layers segregate at the alloy surface.