ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant X-Ray Scattering from the Surface of a Dilute Hg-Au Alloy

105   0   0.0 ( 0 )
 نشر من قبل Oleg Shpyrko
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first resonant x-ray reflectivity measurements from a liquid surface. The surface structure of the liquid Hg-Au alloy system just beyond the solubility limit of 0.14at% Au in Hg had previously been shown to exhibit a unique surface phase characterized by a low-density surface region with a complicated temperature dependence. In this paper we present reflectivity measurements near the Au LIII edge, for 0.2at% Au in Hg at room temperature. The data are consistent with a concentration of Au in the surface region that can be no larger than about 30at%. These results rule out previous suggestions that pure Au layers segregate at the alloy surface.



قيم البحث

اقرأ أيضاً

Polarization dependence of resonant anomalous surface x-ray scattering (RASXS) was studied for interfaces buried in electrolytes or in high-pressure gas. We demonstrate that RASXS exhibits strong polarization dependence when the surface is only sligh tly modified by adsorption of light elements such as carbon monoxide on platinum surfaces. s- and p-polarization RASXS data were simulated with the latest version of ab initio multiple scattering calculations (FEFF8.2). Elementary considerations are additionally presented for the origin of the polarization dependence in RASXS.
A two dimensional crystalline layer is found at the surface of the liquid eutectic Au$_{82}$Si$_{18}$ alloy above its melting point $T_M=359 ^{circ}$C. Underlying this crystalline layer we find a layered structure, 6-7 atomic layers thick. This surfa ce layer undergoes a first-order solid-solid phase transition occurring at $371 ^{circ}$C. The crystalline phase observed for T$>$371 $^{circ}$C is stable up to at least 430 $^{circ}$C. Grazing Incidence X-ray Diffraction data at T$>$371 $^{circ}$C imply lateral order comprising two coexisting phases of different oblique unit cells, in stark contrast with the single phase with a rectangular unit cell found for low-temperature crystalline phase $359 ^{circ}$C$<T<371 ^{circ}$C.
Resonance anomalous surface x-ray scattering (RASXS) technique was applied to electrochemical interface studies. It was used to determine the chemical states of electrochemically formed anodic oxide monolayers on platinum surface. It is shown that RA SXS exhibits strong polarization dependence when the surface is significantly modified. The polarization dependence is demonstrated for three examples; anodic oxide formation, sulfate adsorption, and CO adsorption on platinum surfaces. s- and p- polarization RASXS data were simulated with the latest version of ab initio multiple scattering calculations (FEFF8.2). Elementary theoretical considerations are also presented for the origin of the polarization dependence in RASXS.
228 - C.-H. Yang , J. Koo , C. Song 2006
Resonant x-ray scattering is performed near the Mn K-absorption edge for an epitaxial thin film of BiMnO3. The azimuthal angle dependence of the resonant (003) peak (in monoclinic indices) is measured with different photon polarizations; for the $sig matopi$ channel a 3-fold symmetric oscillation is observed in the intensity variation, while the $sigmatosigma$ scattering intensity remains constant. These features are accounted for in terms of the peculiar ordering of the manganese 3d orbitals in BiMnO3. It is demonstrated that the resonant peak persists up to 770 K with an anomaly around 440 K; these high and low temperatures coincide with the structural transition temperatures, seen in bulk, with and without a symmetry change, respectively. A possible relationship of the orbital order with the ferroelectricity of the system is discussed.
We report the study of the skyrmion state near the surface of Cu$_2$OSeO$_3$ using soft resonant elastic x-ray scattering (REXS) at the Cu $L_3$ edge. Within the lateral sampling area of $200 times 200$ $mu$m$^2$, we found a long-range-ordered skyrmi on lattice phase as well as the formation of skyrmion domains via the multiple splitting of the diffraction spots. In a recent REXS study of the skyrmion phase of Cu$_2$OSeO$_3$ [Phys. Rev. Lett. 112, 167202 (2014)], Langner et al. reported the observation of the unexpected existence of two distinct skyrmion sublattices that arise from inequivalent Cu sites, and that the rotation and superposition of the two periodic structures leads to a moir{e} pattern. However, we find no energy splitting of the Cu peak in x-ray absorption measurements and, instead, discuss alternative origins of the peak splitting. In particular, we find that for magnetic field directions deviating from the major cubic axes, a multidomain skyrmion lattice state is obtained, which consistently explains the splitting of the magnetic spots into two - and more - peaks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا