ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of in-gap states in epitaxial CoFe2O4(111) layers grown on Al2O3(111)/Si(111) by resonant inelastic x-ray scattering

88   0   0.0 ( 0 )
 نشر من قبل Yuki Wakabayashi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied in-gap states in epitaxial CoFe2O4(111), which potentially acts as a perfect spin filter, grown on a Al2O3(111)/Si(111) structure by using ellipsometry, Fe L2,3-edge x-ray absorption spectroscopy (XAS), and Fe L2,3-edge resonant inelastic x-ray scattering (RIXS), and revealed the relation between the in-gap states and chemical defects due to the Fe2+ cations at the octahedral sites (Fe2+ (Oh) cations). The ellipsometry measurements showed the indirect band gap of 1.24 eV for the CoFe2O4 layer and the Fe L2,3-edge XAS confirmed the characteristic photon energy for the preferential excitation of the Fe2+ (Oh) cations. In the Fe L3-edge RIXS spectra, a band-gap excitation and an excitation whose energy is smaller than the band-gap energy (Eg = 1.24 eV) of CoF2O4, which we refer to as below-band-gap excitation (BBGE) hereafter, were observed. The intensity of the BBGE was strengthened at the preferential excitation energy of the Fe2+ (Oh) cations. In addition, the intensity of the BBGE was significantly increased when the thickness of the CoFe2O4 layer was decreased from 11 to 1.4 nm, which coincides with the increase in the site occupancy of the Fe2+ (Oh) cations with decreasing the thickness. These results indicate that the BBGE comes from the in-gap states of the Fe2+ (Oh) cations whose density increases near the heterointerface on the bottom Al2O3 layer. We have demonstrated that RIXS measurements and analyses in combination with ellipsometry and XAS are effective to provide an insight into in-gap states in thin-film oxide heterostructures.



قيم البحث

اقرأ أيضاً

Epitaxy of ZnO layers on cubic GaP (111) substrates has been demonstrated using pulsed laser deposition. Out of plane and in-plane epitaxial relationship of ZnO layer with respect to GaP substrate determined using phi scans in high resolution X-ray d iffraction measurements are (0001) ZnO || (111) GaP and (-1 2 -1 0) ZnO || (-1 1 0) GaP respectively. Our results of epitaxy of ZnO and its intense excitonic photoluminescence with very weak defect luminescence suggest that (111) oriented GaP can be a potential buffer layer choice for the integration of ZnO based optoelectronic devices on Si(111) substrates.
We study the electronic structure and the magnetic properties of epitaxial (Ni1-xCox)Fe2O4(111) layers (x = 0 - 1) with thicknesses d = 1.7 - 5.2 nm grown on Al2O3(111)/Si(111) structures, to achieve a high value of inversion parameter y, which is th e inverse-to-normal spinel-structure ratio, and hence to obtain good magnetic properties even when the thickness is thin enough for electron tunneling as a spin filter. We revealed the crystallographic (octahedral Oh or tetrahedral Td) sites and the valences of the Fe, Co, and Ni cations using experimental soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectra and configuration-interaction cluster-model calculation. In all the (Ni1-xCox)Fe2O4 layers with d = about 4 nm, all Ni cations occupy the Ni2+ (Oh) site, whereas Co cations occupy the three different Co2+ (Oh), Co2+ (Td), and Co3+ (Oh) sites with constant occupancies. According to these features, the occupancy of the Fe3+ (Oh) cations decreases and that of the Fe3+ (Td) cations increases with decreasing x. Consequently, we obtained a systematic increase of y with decreasing x and achieved the highest y value of 0.91 for the NiFe2O4 layer with d = 3.5 nm. From the d dependences of y and magnetization in the d range of 1.7 - 5.2 nm, a magnetically dead layer is present near the NiFe2O4/Al2O3 interface, but its influence on the magnetization was significantly suppressed compared with the case of CoFe2O4 layers reported previously [Y. K. Wakabayasi et al., Phys. Rev. B 96, 104410 (2017)], due to the high site selectivity of the Ni cations. Since our epitaxial NiFe2O4 layer with d = 3.5 nm has a high y values (0.91) and a reasonably large magnetization (180 emu/cc), it is expected to exhibit a strong spin filter effect, which can be used for efficient spin injection into Si.
Polarization dependence of resonant anomalous surface x-ray scattering (RASXS) was studied for interfaces buried in electrolytes or in high-pressure gas. We demonstrate that RASXS exhibits strong polarization dependence when the surface is only sligh tly modified by adsorption of light elements such as carbon monoxide on platinum surfaces. s- and p-polarization RASXS data were simulated with the latest version of ab initio multiple scattering calculations (FEFF8.2). Elementary considerations are additionally presented for the origin of the polarization dependence in RASXS.
We demonstrate that it is possible to mechanically exfoliate graphene under ultra high vacuum conditions on the atomically well defined surface of single crystalline silicon. The flakes are several hundred nanometers in lateral size and their optical contrast is very faint in agreement with calculated data. Single layer graphene is investigated by Raman mapping. The G and 2D peaks are shifted and narrowed compared to undoped graphene. With spatially resolved Kelvin probe measurements we show that this is due to p-type doping with hole densities of n_h simeq 6x10^{12} cm^{-2}. The in vacuo preparation technique presented here should open up new possibilities to influence the properties of graphene by introducing adsorbates in a controlled way.
We report experimental and theoretical evidence for the formation of chiral bobbers - an interfacial topological spin texture - in FeGe films grown by molecular beam epitaxy (MBE). After establishing the presence of skyrmions in FeGe/Si(111) thin fil m samples through Lorentz transmission electron microscopy and topological Hall effect, we perform magnetization measurements that reveal an inverse relationship between film thickness and the slope of the susceptibility (dc{hi}/dH). We present evidence for the evolution as a function of film thickness, L, from a skyrmion phase for L < LD/2 to a cone phase with chiral bobbers at the interface for L > LD/2, where LD ~ 70 nm is the FeGe pitch length. We show using micromagnetic simulations that chiral bobbers, earlier predicted to be metastable, are in fact the stable ground state in the presence of an additional interfacial Rashba Dzyaloshinskii-Moriya interaction (DMI).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا