ﻻ يوجد ملخص باللغة العربية
We study a two-dimensional compressible Ising spin glass at constant volume. The spin interactions are coupled to the distance between neighboring particles in the Edwards-Anderson model with +/- J interactions. We find that the energy of a given spin configuration is shifted from its incompressible value, E_0, by an amount quadratic in E_0 and proportional to the coupling strength. We then construct a simple model expressed only in terms of spin variables that predicts the existence of a critical value of the coupling above which the spin-glass transition disappears.
This paper reports numerical studies of a compressible version of the Ising spin glass in two dimensions. Compressibility is introduced by adding a term that couples the spin-spin interactions and local lattice deformations to the standard Edwards-An
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes
We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature d
We investigate static and dynamic properties of gray-scale image restoration (GSIR) by making use of the Q-Ising spin glass model, whose ladder symmetry allows to take in account the distance between two spins. We thus give an explicit expression of
In this work it is studied the Hopfield fermionic spin glass model which allows interpolating from trivial randomness to a highly frustrated regime. Therefore, it is possible to investigate whether or not frustration is an essential ingredient which