ﻻ يوجد ملخص باللغة العربية
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, u = 2.562(42) for the thermal exponent, eta = -0.3900(36) for the anomalous dimension and omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield alpha = -5.69(13), beta = 0.782(10) and gamma = 6.13(11). We also compute several universal quantities at Tc.
We present a large-scale simulation of the three-dimensional Ising spin glass with Gaussian disorder to low temperatures and large sizes using optimized population annealing Monte Carlo. Our primary focus is investigating the number of pure states re
We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature d
The spatially uniaxially anisotropic d=3 Ising spin glass is solved exactly on a hierarchical lattice. Five different ordered phases, namely ferromagnetic, columnar, layered, antiferromagnetic, and spin-glass phases, are found in the global phase dia
We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages
A novel order parameter $Phi$ for spin glasses is defined based on topological criteria and with a clear physical interpretation. $Phi$ is first investigated for well known magnetic systems and then applied to the Edwards-Anderson $pm J$ model on a s