ﻻ يوجد ملخص باللغة العربية
We investigate static and dynamic properties of gray-scale image restoration (GSIR) by making use of the Q-Ising spin glass model, whose ladder symmetry allows to take in account the distance between two spins. We thus give an explicit expression of the Hamming distance between the original and restored images as a function of the hyper-parameters in the mean field limit. Finally, numerical simulations for real-world pictures are carried out to prove the efficiency of our model.
This paper reports numerical studies of a compressible version of the Ising spin glass in two dimensions. Compressibility is introduced by adding a term that couples the spin-spin interactions and local lattice deformations to the standard Edwards-An
We study a two-dimensional compressible Ising spin glass at constant volume. The spin interactions are coupled to the distance between neighboring particles in the Edwards-Anderson model with +/- J interactions. We find that the energy of a given spi
In this work it is studied the Hopfield fermionic spin glass model which allows interpolating from trivial randomness to a highly frustrated regime. Therefore, it is possible to investigate whether or not frustration is an essential ingredient which
We study the spectrum of the Hessian of the Sherrington-Kirkpatrick model near T=0, whose eigenvalues are the masses of the bare propagators in the expansion around the mean-field solution. In the limit $Tll 1$ two regions can be identified. The firs
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes