ﻻ يوجد ملخص باللغة العربية
We consider a semiconductor quantum-well placed in a wave guide microcavity and interacting with the broadband squeezed vacuum radiation, which fills one mode of the wave guide with a large average occupation. The wave guide modifies the optical density of states so that the quantum well interacts mostly with the squeezed vacuum. The vacuum is squeezed around the externally controlled central frequency $om_0$, which is tuned above the electron-hole gap $E_g$, and induces fluctuations in the interband polarization of the quantum-well. The power spectrum of scattered light exhibits a peak around $om_0$, which is moreover non-Lorentzian and is a result of both the squeezing and the particle-hole continuum. The squeezing spectrum is qualitatively different from the atomic case. We discuss the possibility to observe the above phenomena in the presence of additional non-radiative (e-e, phonon) dephasing.
We report the results of molecular dynamics simulation of a spatiotemporal evolution of the locally photoexcited electrons and holes localized in two separate layers. It is shown that the ring-shaped spatial pattern of luminescence forms due to the s
We fabricated a hybrid structure in which cobalt and permalloy micromagnets produce a local in-plane spin-dependent potential barrier for high-mobility electrons at the GaAs/AlGaAs interface. Spin effects are observed in ballistic transport in the te
The electron-hole symmetry in the structure graphene - insulating substrate -semiconductor gate is violated due to an asymmetrical drop of potential in the semiconductor gate under positive or negative biases. The gate voltage dependencies of concent
Electron optics in the solid state promises new functionality in electronics through the possibility of realizing micrometer-sized interferometers, lenses, collimators and beam splitters that manipulate electrons instead of light. Until now, however,
We investigate Landau-quantized excitonic absorption and luminescence of monolayer WSe$_2$ under magnetic field. We observe gate-dependent quantum oscillations in the bright exciton and trions (or exciton-polarons) as well as the dark trions and thei