ﻻ يوجد ملخص باللغة العربية
We fabricated a hybrid structure in which cobalt and permalloy micromagnets produce a local in-plane spin-dependent potential barrier for high-mobility electrons at the GaAs/AlGaAs interface. Spin effects are observed in ballistic transport in the tens millitesla range of the external field, and are attributed to switching between Zeeman and Stern-Gerlach modes -- the former dominating at low electron densities.
We report the discovery of an effect where two ferromagnetic materials, one semiconductor ((Ga,Mn)As) and one metal (permalloy), can be directly deposited on each other and still switch their magnetization independently. We use this independent magne
Conventional spin-singlet superconductivity that deeply penetrates into ferromagnets is typically killed by the exchange interaction, which destroys the spin-singlet pairs. Under certain circumstances, however, superconductivity survives this interac
Spin-helical states, which arise in quasi-one-dimensional (1D) channels with spin-orbital (SO) coupling, underpin efforts to realize topologically-protected quantum bits based on Majorana modes in semiconductor nanowires. Detecting helical states is
We consider a semiconductor quantum-well placed in a wave guide microcavity and interacting with the broadband squeezed vacuum radiation, which fills one mode of the wave guide with a large average occupation. The wave guide modifies the optical dens
We report Coulomb blockade transport studies of InAs nanowires grown with epitaxial superconducting Al and ferromagnetic insulator EuS on overlapping facets. By comparing experimental results to a theoretical model, we associate cotunneling features