ﻻ يوجد ملخص باللغة العربية
The inelastic scattering intensities of glasses and amorphous materials has a maximum at a low frequency, the so called Boson peak. Under applied hydrostatic pressure, $P$, the Boson peak frequency, $omega_{rm b}$, is shifted upwards. We have shown previously that the Boson peak is created as a result of a vibrational instability due to the interaction of harmonic quasi localized vibrations (QLV). Applying pressure one exerts forces on the QLV. These shift the low frequency part of the excess spectrum to higher frequencies. For low pressures we find a shift of the Boson peak linear in $P$, whereas for high pressures the shift is $propto P^{1/3}$. Our analytics is supported by simulation. The results are in agreement with the existing experiments.
Experimental results on the density of states and on the acoustic modes of glasses in the THz region are compared to the predictions of two categories of models. A recent one, solely based on an elastic instability, does not account for most observat
We show that a {em vibrational instability} of the spectrum of weakly interacting quasi-local harmonic modes creates the maximum in the inelastic scattering intensity in glasses, the Boson peak. The instability, limited by anharmonicity, causes a com
The boson peak in metallic glasses is modeled in terms of local structural shear rearrangements. Using Eshelbys solution of the corresponding elasticity theory problem (J. D. Eshelby, Proc. Roy. Soc. A241, 376 (1957)), one can calculate the saddle po
The density of vibrational states $g(omega)$ of an amorphous system is studied by using the random-matrix theory. Taking into account the most important correlations between elements of the random matrix of the system, equations for the density of vi
Using molecular dynamics simulation, we have calculated the pressure dependence of the diffusion constant in a binary Lennard-Jones Glass. We observe four temperature regimes. The apparent activation volume drops from high values in the hot liquid to